Chapter 7 Class 12 Integrals
Concept wise

Slide17.JPG

Slide18.JPG
Slide19.JPG
Slide20.JPG
Slide21.JPG Slide22.JPG Slide23.JPG Slide24.JPG Slide25.JPG


Transcript

Example 37 Evaluate ∫1β–’(π‘₯^4 𝑑π‘₯)/(π‘₯ βˆ’1)(π‘₯^2 + 1) Let I = ∫1β–’(π‘₯^4 𝑑π‘₯)/(π‘₯ βˆ’1)(π‘₯^2 + 1) 𝑑π‘₯ We can write π‘₯^4/(π‘₯ βˆ’1)(π‘₯^2 + 1) = π‘₯^4/(π‘₯^3 βˆ’ π‘₯^2+ π‘₯ βˆ’ 1) Dividing Numerator by denominator as follows. Hence π‘₯^4 = (π‘₯^3βˆ’π‘₯^2+π‘₯+1) (π‘₯+1)+1 Thus, π‘₯^4/(π‘₯^3 βˆ’ π‘₯^2 + π‘₯ + 1) = (π‘₯+1)+1/(π‘₯^3 βˆ’ π‘₯^2 + π‘₯ + 1) = (π‘₯+1)+1/((π‘₯ βˆ’ 1) (π‘₯^2 +1) ) Now, we can write 1/((π‘₯^2 + 1) (π‘₯ βˆ’ 1) )= (𝐴π‘₯ + 𝐡)/(π‘₯^2 + 1) + 𝐢/(π‘₯ βˆ’ 1) 1/((π‘₯^2 + 1) (π‘₯ βˆ’ 1) )= ((𝐴π‘₯ + 𝐡)(π‘₯ βˆ’ 1) + 𝐢 (π‘₯^2 + 1))/((π‘₯^2 + 1)(π‘₯ βˆ’1)) Canceling denominator 1 = (𝐴π‘₯ + 𝐡)(π‘₯ βˆ’ 1) + 𝐢 (π‘₯^2 + 1) Putting x = 1 1 = (𝐴(1) + 𝐡)(1βˆ’1) + 𝐢 ((βˆ’1)^2 + 1) 1 = (𝐴+𝐡)(0)+ 𝐢 (1+1) 1 = 2𝐢 𝐢=1/2 Putting x = 0 1 = (𝐴π‘₯ + 𝐡)(π‘₯ βˆ’ 1) + 𝐢 (π‘₯^2 + 1) 1 = (𝐴(0) + 𝐡)(0βˆ’1) + 𝐢 (0^2+1) 1 = (𝐡)(βˆ’1) + 𝐢 (1) 1 = 𝐢 βˆ’"B" B =πΆβˆ’1 B =1/2 βˆ’1 B =(βˆ’1)/2 Putting x = βˆ’ 1 1 = (𝐴π‘₯ + 𝐡)(π‘₯ βˆ’ 1) + 𝐢 (π‘₯^2 + 1) 1 = (𝐴(βˆ’1)+ 𝐡)(βˆ’1βˆ’1) + 𝐢 ((βˆ’1)^2+1) 1 = (βˆ’π΄+𝐡)(βˆ’2)+𝐢 (1+1) 1 = (π΄βˆ’π΅)2+𝐢 (2) 1/2=π΄βˆ’π΅+𝐢 𝐴=1/2+π΅βˆ’πΆ 𝐴 =1/2βˆ’1/2βˆ’1/2 𝐴 =(βˆ’1)/2 Hence we can write 1/((π‘₯^2 + 1) (π‘₯ βˆ’ 1) )= (𝐴π‘₯ + 𝐡)/(π‘₯^2 + 1) + 𝐢/(π‘₯ βˆ’ 1) 1/((π‘₯^2 + 1) (π‘₯ βˆ’ 1) ) = (βˆ’ 1/2 π‘₯ βˆ’ 1/2)/(π‘₯^2 + 1) + (1/2)/(π‘₯ βˆ’ 1) = (βˆ’1)/2 ( π‘₯)/(π‘₯^2 + 1) βˆ’1/2 1/(π‘₯^2 + 1)+ 1/2(π‘₯ βˆ’ 1) Hence we can write 1/((π‘₯^2 + 1) (π‘₯ βˆ’ 1) )= (𝐴π‘₯ + 𝐡)/(π‘₯^2 + 1) + 𝐢/(π‘₯ βˆ’ 1) 1/((π‘₯^2 + 1) (π‘₯ βˆ’ 1) ) = (βˆ’ 1/2 π‘₯ βˆ’ 1/2)/(π‘₯^2 + 1) + (1/2)/(π‘₯ βˆ’ 1) = (βˆ’1)/2 ( π‘₯)/(π‘₯^2 + 1) βˆ’1/2 1/(π‘₯^2 + 1)+ 1/2(π‘₯ βˆ’ 1) Therefore, we can write I=∫1β–’γ€–(π‘₯+1)+1/(π‘₯^2 + 1)(π‘₯ βˆ’ 1) 𝑑π‘₯γ€— =∫1β–’[(π‘₯+1)βˆ’1/2 π‘₯/((π‘₯^2 + 1) ) 𝑑π‘₯βˆ’βˆ«1β–’γ€–1/2 1/(π‘₯^2 + 1) 𝑑π‘₯+∫1β–’γ€–1/2 1/((π‘₯ βˆ’ 1) ) 𝑑π‘₯γ€—γ€—] =π‘₯^2/2+π‘₯βˆ’1/2 ∫1β–’γ€–π‘₯/(π‘₯^2 + 1)βˆ’1/2 ∫1β–’γ€–1/(π‘₯^2 + 1) 𝑑π‘₯+1/2 ∫1β–’γ€–1/(π‘₯ βˆ’ 1) 𝑑π‘₯γ€—γ€—γ€— ∴ I = π‘₯^2/2+π‘₯ – 1/2 I"1 βˆ’ " 1/2 I"2 + " 1/2 I"3" Solving π‘°πŸ I1=∫1β–’γ€–π‘₯/(π‘₯^2 + 1) 𝑑π‘₯γ€— Put 𝑑=π‘₯^2+1 Differentiating w.r.t. π‘₯ 𝑑𝑑/𝑑π‘₯=2π‘₯+0 𝑑𝑑/2π‘₯=𝑑π‘₯ Therefore, ∫1β–’γ€–(π‘₯ 𝑑π‘₯)/(π‘₯^2 + 1)=∫1β–’π‘₯/𝑑 𝑑𝑑/2π‘₯γ€—=∫1β–’1/2 𝑑𝑑/𝑑=1/2 π‘™π‘œπ‘”|𝑑|+𝐢1 Putting 𝑑=π‘₯^2+1 =1/2 π‘™π‘œπ‘”|π‘₯^2+1|+𝐢1 And, I2=∫1β–’γ€–1/(π‘₯^2 + 1) 𝑑π‘₯γ€—=tan^(βˆ’1)⁑〖π‘₯+γ€— 𝐢2 I3=∫1β–’γ€–1/(π‘₯ βˆ’1) 𝑑π‘₯γ€—=π‘™π‘œπ‘”|π‘₯βˆ’1|+𝐢3 Hence 𝐼=π‘₯^2/2+π‘₯βˆ’1/2 𝐼1βˆ’1/2 𝐼2+1/2 𝐼3 =π‘₯^2/2+π‘₯βˆ’1/2 (1/2 π‘™π‘œπ‘”|π‘₯^2+1|+𝐢1)βˆ’1/2 (γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (π‘₯)+C_2 )βˆ’1/2 (π‘™π‘œπ‘”|π‘₯βˆ’1|+𝐢3) =π‘₯^2/2+π‘₯βˆ’1/4 π‘™π‘œπ‘”|π‘₯^2+1|+𝐢1/2βˆ’1/2 tan^(βˆ’1)⁑〖π‘₯ 𝐢2/2+1/2 π‘™π‘œπ‘”|π‘₯βˆ’1|+𝐢3/2γ€— =𝒙^𝟐/𝟐+𝒙+𝟏/𝟐 π’π’π’ˆ|π’™βˆ’πŸ|βˆ’πŸ/πŸ’ π’π’π’ˆ(𝒙^𝟐+𝟏)βˆ’πŸ/𝟐 〖𝒕𝒂𝒏〗^(βˆ’πŸ)⁑〖𝒙+π‘ͺγ€—

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.