Ex 9.3, 23 (MCQ) - Chapter 9 Class 12 Differential Equations
Last updated at April 16, 2024 by Teachoo
Ex 9.3
Ex 9.3, 2
Ex 9.3, 3
Ex 9.3, 4 Important
Ex 9.3, 5
Ex 9.3, 6
Ex 9.3, 7 Important
Ex 9.3, 8
Ex 9.3, 9 Important
Ex 9.3, 10 Important
Ex 9.3, 11 Important
Ex 9.3, 12
Ex 9.3, 13
Ex 9.3, 14
Ex 9.3, 15 Important
Ex 9.3, 16
Ex 9.3, 17 Important
Ex 9.3, 18
Ex 9.3, 19 Important
Ex 9.3, 20 Important
Ex 9.3, 21
Ex 9.3, 22 Important
Ex 9.3, 23 (MCQ) You are here
Last updated at April 16, 2024 by Teachoo
Ex 9.3, 23 The general solution of the differential equation 𝑑𝑦/𝑑𝑥=𝑒^(𝑥+𝑦) is (A) 𝑒^𝑥+𝑒^(−𝑦)=𝐶 (B) 𝑒^𝑥+𝑒^𝑦=𝐶 (C) 𝑒^(−𝑥)+𝑒^𝑦=𝐶 (D) 𝑒^(−𝑥)+𝑒^(−𝑦)=𝐶 𝑑𝑦/𝑑𝑥 = 𝑒^(𝑥 + 𝑦) 𝑑𝑦/𝑑𝑥 = 𝑒^(𝑥 ) 𝑒^( 𝑦) 𝒅𝒚/𝒆^𝒚 = 𝒆^(𝒙 ) 𝒅𝒙 Integrating both sides ∫1▒𝑒^(−𝑦) 𝑑𝑦= ∫1▒𝑒^𝑥 𝑑𝑥 〖−𝒆〗^(−𝒚) = 𝒆^𝒙+𝒄 𝑒^𝑥 + 𝑒^(−𝑦) = C So, the correct answer is (a)