Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25 You are here
Last updated at April 16, 2024 by Teachoo
Ex 3.3, 25 Prove that: cos 6𝑥 = 32 cos6 𝑥 – 48 cos4 𝑥 + 18 cos2 𝑥 – 1 Solving L.H.S. cos 6x = 2(cos 3x)2 – 1 = 2 ( 4 cos3 x – 3 cos x)2 – 1 We know that cos 2x = 2 cos2 x – 1 Replacing by 3x cos 2(3x) = 2 cos2 (3x) -1 cos 6x = 2 cos2 3x -1 Using (a – b)2 = a2 + b2 – 2ab = 2 [(4 cos3 x)2 + (3 cos x )2 – 2 (4 cos3 x) × (3 cos x)] – 1 = 2 [(16 cos6x + 9 cos2 x – 24 cos4x)] – 1 = 2 × 16 cos6x + 2 × 9 cos2 x – 2 × 24 cos4x – 1 = 32 cos6x – 48 cos4x + 18 cos2x – 1 = R.H.S. Hence L.H.S. = R.H.S Hence proved