Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24 You are here
Ex 3.3, 25
Last updated at April 16, 2024 by Teachoo
Ex 3.3, 24 Prove that cos 4𝑥 = 1 – 8sin2 𝑥 cos2 𝑥 Solving L.H.S. cos 4x = 2(cos 2x)2 – 1 = 2 ( 2 cos2 x – 1)2 -1 We know that cos 2x = 2 cos2 x – 1 Replacing by 2x cos 2(2x) = 2 cos2 (2x) − 1 cos 4x = 2 cos2 2x − 1 Using (a – b)2 = a2 + b2 – 2ab = 2 [(2cos x)2 + (1)2 – 2 ( 2cos2x ) × 1] – 1 = 2 (4cos4x + 1 – 4 cos2x ) – 1 = 2 × 4cos4x + 2 × 1– 2 × 4 cos2x – 1 = 2 × 4cos4x + 2 × 1– 2 × 4 cos2x – 1 = 8cos4x + 2 – 8 cos2x – 1 = 8cos4x – 8 cos2x + 2 – 1 = 8cos4x – 8 cos2x + 1 = 8cos2x (cos2x – 1) + 1 = 8cos2x [– (1 – cos2x)] + 1 = –8cos2x [(1 – cos2x )] + 1 = – 8cos2x sin2x + 1 = 1 – 8 cos2x sin2x = R.H.S. Hence R.H.S. = L.H.S. Hence proved