Slide13.JPG

Slide14.JPG

Slide15.JPG

Slide16.JPG
Slide17.JPG Slide18.JPG Slide19.JPG

Go Ad-free

Transcript

Ex 11.1, 5 In a circle of radius 21 cm, an arc subtends an angle of 60Β° at the centre. Find: the length of the arc Length of Arc APB = 𝜽/πŸ‘πŸ”πŸŽ Γ— (πŸπ…π’“) = (60Β°)/(360Β°) Γ— 2 Γ— 22/7 Γ— 21 = 1/6 Γ— 2 Γ— 22 Γ— 3 = 22 cm Ex 11.1, 5 In a circle of radius 21 cm, an arc subtends an angle of 60Β° at the centre. Find: (ii) area of the sector formed by the arc Area of sector OAPB = πœƒ/360Γ—πœ‹π‘Ÿ2 = πŸ”πŸŽ/πŸ‘πŸ”πŸŽ Γ— 𝟐𝟐/πŸ• Γ— 𝟐𝟏 Γ— 𝟐𝟏 = 1/6 Γ— 22/7 Γ— 21 Γ— 21 = 1/6 Γ— 22 Γ— 3 Γ— 21 = 231 cm2 Ex 11.1, 5 In a circle of radius 21 cm, an arc subtends an angle of 60Β° at the centre. Find: (iii) area of segment formed by the corresponding chord Area of segment APB = Area of sector OAPB – Area of Ξ”OAB From last part, Area of sector OAPB = 231 cm2 Finding area of Ξ” AOB Area Ξ” AOB = 1/2 Γ— Base Γ— Height We draw OM βŠ₯ AB ∴ ∠ OMB = ∠ OMA = 90Β° And, by symmetry M is the mid-point of AB ∴ BM = AM = 1/2 AB In right triangle Ξ” OMA sin O = (side opposite to angle O)/Hypotenuse sin πŸ‘πŸŽΒ° = 𝐀𝑴/𝑨𝑢 1/2=𝐴𝑀/21 21/2 = AM AM = 𝟐𝟏/𝟐 In right triangle Ξ” OMA cos O = (𝑠𝑖𝑑𝑒 π‘Žπ‘‘π‘—π‘Žπ‘π‘’π‘›π‘‘ π‘‘π‘œ π‘Žπ‘›π‘”π‘™π‘’ 𝑂)/π»π‘¦π‘π‘œπ‘‘π‘’π‘›π‘’π‘ π‘’ cos πŸ‘πŸŽΒ° = 𝑢𝑴/𝑨𝑢 √3/2=𝑂𝑀/21 √3/2 Γ— 21 = OM OM = βˆšπŸ‘/𝟐 Γ— 21 From (1) AM = 𝟏/𝟐AB 2AM = AB AB = 2AM Putting value of AM AB = 2 Γ— 1/2 Γ— 21 AB = 21cm Now, Area of Ξ” AOB = 1/2 Γ— Base Γ— Height = 𝟏/𝟐 Γ— AB Γ— OM = 1/2 Γ— 21 Γ— √3/2 Γ— 21 = (πŸ’πŸ’πŸβˆšπŸ‘)/πŸ’ cm2 Therefore, Area of segment APB = Area of sector OAPB – Area of Ξ”OAB = (231 – πŸ’πŸ’πŸ/πŸ’ βˆšπŸ‘) cm2

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo