• Answer of this question

    If A=[1 a 0 1] then An =[1 na 0 1] ?
    Madhu Singh's image
    Madhu Singh

    Slide1.JPGSlide2.JPGSlide3.JPG

    If  A = [1 a 0 1]  , then prove An = [1 na 0 1]  where n is any positive integer

    We shall prove the result by using mathematical induction.

     

    Step 1:

    P(n): If A = [1 a 0 1]  , then prove An = [1 na 0 1] , n ∈ N

     

    Step 2: Prove for n = 1

    For n = 1

    L.H.S = A1 = A = [1 a 0 1]

    R.H.S = [1 a 0 1] = [1 a 0 1]

    L.H.S = R.H.S

      ∴ P(n) is true for n = 1

     

    Step 3: Assume P(k) to be true and then prove P(k+1) is true

    Assume that P (k) is true

    P(k) : If A= [1 a 0 1] , then Ak = [1 k 0 1]

    We will have to prove that P(k +1) is true

    P(k + 1) : If A= [1 a 0 1] , then Ak+1 = [1 k 0 1]

    Taking L.H.S

      Ak+1

      = Ak  . A

      = [1 (k + 1)] [1 a 0 1 ]

      = [(1(1)  +  ka(0))¦(0(1)  +  1(0))       (1(a)  +  ka(1))¦(0(a)  +  1(1))]

      = [1     a +  ka1]

      = R.H.S

    Thus P (k + 1) is true

    ∴ By the principal of mathematical induction , P(n) is true for n ∈ N

    Hence, if A = [1 a 0 1]  , then prove An = [1 na 0 1] n ∈ N.


    Written on March 17, 2017, 2 p.m.