Evaluate definite integral e cos x / e cos x + e -cos x 0 to pi
Question number 2
Hi Nitin
The Textual version of the answer is
Evaluate: ∫_0^π▒〖e^cosx /(e^cosx + e^〖-cos〗x ) dx〗
Let I=∫_0^π▒〖e^cosx /(e^cosx + e^〖-cos〗x ) dx〗 " "
I= ∫_0^π▒〖e^cos〖(π - x)〗 /(e^cos〖(π - x)〗 + e^〖-cos〗〖(π - x)〗 ) dx〗 " "
I=∫_0^π▒〖e^〖-cos〗x /(e^〖-cos〗x + e^(〖-(-cos〗x)) ) dx〗
I=∫_0^π▒〖e^〖-cos〗x /(e^〖-cos〗x + e^cosx ) dx〗
Adding (1) and (2) i.e. (1) + (2)
I+I=∫_0^π▒〖e^cosx /(e^cosx + e^〖-cos〗x ) dx〗 + ∫_0^π▒〖e^〖-cos〗x /(e^〖-cos〗x + e^cosx ) dx〗
2I=∫_0^π▒〖(e^cosx + e^〖-cos〗x )/(e^cosx + e^〖-cos〗x ) dx〗
2I =∫_0^π▒〖1 .〗dx
2I=[x]_0^π
2I =π-0
2I =π
I=π/2
Notes:
Using P4 : ∫_0^a▒〖f(x)dx=〗 ∫_0^a▒f(a-x)dx
(As cos (π-x)=-cosx)