Inverse of a 2 × 2 matrix
Inverse of a 3 × 3 matrix
Finding Inverse of a matrix
Last updated at April 16, 2024 by Teachoo
Finding inverse of matrix using adjoint Letβs learn how to find inverse of matrix using adjoint But first, let us define adjoint. For matrix A, A = [β 8(π_11&π_12&π_13@π_21&π_22&π_23@π_31&π_32&π_33 )] Adjoint of A is, adj A = Transpose of [β 8(π΄_11&π΄_12&π΄_13@π΄_21&π΄_22&π΄_23@π΄_31&π΄_32&π΄_33 )] = [β 8(π΄_11&π΄_21&π΄_31@π΄_12&π΄_22&π΄_32@π΄_13&π΄_23&π΄_33 )] Where Aij cofactor Now, we have a property for (adj π΄) π΄ (adj π΄) = (adj π΄) π΄ = |π΄| I If we divide the equation by |π΄| (π΄ (πππ π΄))/(|π΄|) = ((πππ π΄) π΄)/(|π΄|) = (|π΄| I)/(|π΄|) π΄ (1/(|π΄|)Γπππ π΄) = (1/(|π΄|)Γπππ π΄) π΄ = I This is similar to γπ΄π΄γ^(β1) = π΄^(β1)=I Thus, π΄^(β1) = 1/(|π΄|) adj π΄ Also, If |π΄| = 0, the matrix π΄ is called singular matrix If |π΄| β 0, the matrix π΄ is called non-singular matrix Note : π΄^(β1) is only possible if |π΄| β 0 Thus, inverse of A is possible only when matrix is non-singular Letβs look at how to find inverse of a 2 Γ 2 & a 3 Γ 3 matrix using adjoint Inverse of a 2 Γ 2 matrix Let A = [β 8(3&2@1&4)] We need to find itβs inverse First, we will check if |A| β 0 |A| = |β 8(3&2@1&4)| = 3 Γ 4 β 1 Γ 2 = 12 β 2 = 10 Since |A| β 0, Inverse of A is possible Now, letβs find adj A adj A = [β 8(3&2@1&4)] We have a shortcut method to find adjoint of a 2 Γ 2 matrix adj A = [β 8(3&2@1&4)] = [β 8(4&β2@β1&3)] Now we know that π΄^(β1) = 1/(|π΄|) adj A = 1/10 [β 8(4&β2@β1&3)] = [β 8(4/10&(β2)/10@(β1)/10&3/10)] = [β 8(2/5&(β1)/5@(β1)/10&3/10)] Letβs check AA-1 = [β 8(3&2@1&4)] [β 8(2/5&(β1)/5@(β1)/10&3/10)] = [β 8(3Γ2/5+2Γ((β1)/10)&3Γ((β1)/5)+2Γ(3/10)@1Γ2/5+4Γ((β1)/10)&1Γ((β1)/5)+4Γ(3/10) )] = [β 8(6/5β2/10&(β3)/5+3/5@2/5β4/10&(β1)/5+12/10)] = [β 8(6/5β1/5&0@2/5β2/5&(β1)/5+6/5)] = [β 8(5/5&0@0&5/5)] = [β 8(1&0@0&1)] Thus, AA-1 = I Inverse of a 3 Γ 3 matrix Let A = [β 8(9&2&1@5&β1&6@4&0&β2)] We need to find itβs inverse First, we will check if |A| β 0 |A| = |β 8(9&2&1@5&β1&6@4&0&β2)| = 9 ((β1) Γ (β2) β 0 Γ 6) β 2 (5 Γ (β2) β 4 Γ 6) + 1 (5 Γ 0 β 4 Γ (β1)) = 9 (2 β 0) β 2 (β10 β 24) + 1 (0 + 4) = 9 Γ 2 β 2 Γ (β34) + 1 Γ 4 = 18 + 68 + 4 = 90 Since |A| β 0, Inverse of A is possible Now, letβs find adj A adj A = Transpose of [β 8(π΄_11&π΄_12&π΄_13@π΄_21&π΄_22&π΄_23@π΄_31&π΄_32&π΄_33 )] = [β 8(π΄_11&π΄_21&π΄_31@π΄_12&π΄_22&π΄_32@π΄_13&π΄_23&π΄_33 )] Finding cofactors A11 = |β 8(9&2&1@5&β1&6@4&0&β2)| = (β1) Γ (β2) β 0 Γ 6 = 2 β 0 = 2 A12 = β1Γ|β 8(9&2&1@5&β1&6@4&0&β2)| = β1Γ |β 8(5&6@4&β2)| = β(5 Γ (β2) β 4 Γ 6) = 34 A13 = |β 8(9&2&1@5&β1&6@4&0&β2)| = 5 Γ 0 β 4 Γ (β1) = 0 + 4 = 4 A21 = β1Γ |β 8(9&2&1@5&β1&6@4&0&β2)| = β(2 Γ (β2) β 0 Γ 1) = 4 A22 = |β 8(9&2&1@5&β1&6@4&0&β2)| = (9 Γ (β2) β 4 Γ 1) = β22 A23 = β1Γ|β 8(9&2&1@5&β1&6@4&0&β2)| = β1Γ |β 8(9&2@4&0)| = β(9 Γ 0 β 4 Γ 2) = 8 A31 = |β 8(9&2&1@5&β1&6@4&0&β2)| = |β 8(2&1@β1&6)| = 2 Γ 6 β (β1) Γ 1 = 12 + 1 = 13 A32 = β1Γ|β 8(9&2&1@5&β1&6@4&0&β2)| = β1Γ |β 8(9&1@5&6)| = β(9 Γ 6 β 5 Γ 1) = β49 A33 = |β 8(9&2&1@5&β1&6@4&0&β2)| = |β 8(9&2@5&β1)| = 9 Γ (β1) β 5 Γ 2 = β9 β 10 = β19 Thus, adj A = [β 8(2&4&13@34&β22&β49@4&8&β19)] And, Aβ1 = 1/(|π΄|) adj A = 1/90 [β 8(2&4&13@34&β22&β49@4&8&β19)] = [β 8(2/90&4/90&13/90@34/90&(β22)/90&(β49)/90@4/90&8/90&(β19)/90)] = [β 8(1/45&2/45&13/90@17/45&(β11)/45&(β49)/90@2/45&4/45&(β19)/90)] Letβs check AAβ1 = [β 8(9&2&1@5&β1&6@4&0&β2)] [β 8(1/45&2/45&13/90@17/45&(β11)/45&(β49)/90@2/45&4/45&(β19)/90)] = [β 8(9(1/45)+2(17/45)+1(2/45)&9(2/45)+2((β11)/45)+1(4/45)&9(13/90)+2((β49)/90)+1((β19)/90)@5(1/45)+(β1)(17/45)+6(2/45)&5(2/45)+(β1)((β11)/45)+6(4/45)&5(13/90)+(β1)((β49)/90)+6((β19)/90)@4(1/45)+0(17/45)+(β2)(2/45)&4(2/45)+0((β11)/45)+(β2)(4/45)&9(13/90)+0((β49)/90)+(β2)((β19)/90) )] = [β 8(9/45+34/45+2/45&18/45β22/45+4/45&117/90β98/90β19/90@5/45β17/45+12/45&10/45+11/45+24/45&65/90+49/90β114/90@4/45β4/45&8/45β8/45&52/90+38/90)] = [β 8(45/45&0&0@0&45/45&0@0&0&90/90)] = [β 8(1&0&0@0&1&0@0&0&1)] = I Thus, AAβ1 = I