Derivative of sec-1 x (Sec inverse x) - Teachoo [with Video]

Derivative of sec-1 x (Sec inverse x) - Part 2

Go Ad-free

Transcript

Derivative of ใ€–๐’”๐’†๐’„ใ€—^(โˆ’๐Ÿ) ๐’™ ๐‘“ (๐‘ฅ)=ใ€–๐‘ ๐‘’๐‘ใ€—^(โˆ’1) ๐‘ฅ Let ๐’š= ใ€–๐’”๐’†๐’„ใ€—^(โˆ’๐Ÿ) ๐’™ secโกใ€–๐‘ฆ=๐‘ฅใ€— ๐’™=๐ฌ๐ž๐œโกใ€–๐’š ใ€— Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ ๐‘‘๐‘ฅ/๐‘‘๐‘ฅ = (๐‘‘ (secโก๐‘ฆ ))/๐‘‘๐‘ฅ 1 = (๐‘‘ (secโก๐‘ฆ ))/๐‘‘๐‘ฅ ร— ๐‘‘๐‘ฆ/๐‘‘๐‘ฆ 1 = (๐‘‘ (secโก๐‘ฆ ))/๐‘‘๐‘ฆ ร— ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ 1 = ๐’•๐’‚๐’โก๐’š .๐’”๐’†๐’„โก๐’š. ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = 1/(๐’•๐’‚๐’โก๐’š .ใ€– secใ€—โก๐‘ฆ ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = 1/((โˆš(ใ€–๐ฌ๐ž๐œใ€—^๐Ÿโก๐’š โˆ’ ๐Ÿ)) .ใ€– secใ€—โก๐‘ฆ ) Putting value of ๐‘ ๐‘’๐‘โก๐‘ฆ = ๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = 1/((โˆš(๐‘ฅ^2 โˆ’ 1 ) ) . ๐‘ฅ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = 1/(๐‘ฅ โˆš(๐‘ฅ^2 โˆ’ 1 ) ) Hence ๐’…(ใ€–๐’”๐’†๐’„ใ€—^(โ€“๐Ÿ) ๐’™)/๐’…๐’™ = ๐Ÿ/(๐’™ โˆš(๐’™^๐Ÿ โˆ’ ๐Ÿ ) ) As tan2 ฮธ = sec2 ฮธ โ€“ 1, tan ฮธ = โˆš("sec2 ฮธ โ€“ 1" ) As ๐‘ฆ = ใ€–๐‘ ๐‘’๐‘ใ€—^(โˆ’1) ๐‘ฅ So, ๐’”๐’†๐’„โก๐’š = ๐’™

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo