Derivative of cot-1 x (cot inverse x) - Teachoo  [with Video]

Derivative of cot-1 x (cot inverse x) - Part 2

Go Ad-free

Transcript

Derivative of ใ€–๐’„๐’๐’•ใ€—^(โˆ’๐Ÿ) ๐’™ ๐‘“ (๐‘ฅ)=ใ€–๐‘๐‘œ๐‘กใ€—^(โˆ’1) ๐‘ฅ Let ๐’š= ใ€–๐’„๐’๐’•ใ€—^(โˆ’๐Ÿ) ๐’™ cotโกใ€–๐‘ฆ=๐‘ฅใ€— ๐’™=๐œ๐จ๐ญโกใ€–๐’š ใ€— Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ ๐‘‘๐‘ฅ/๐‘‘๐‘ฅ = (๐‘‘ (cotโก๐‘ฆ ))/๐‘‘๐‘ฅ 1 = (๐‘‘ (cotโก๐‘ฆ ))/๐‘‘๐‘ฅ ร— ๐‘‘๐‘ฆ/๐‘‘๐‘ฆ 1 = (๐‘‘ (cotโก๐‘ฆ ))/๐‘‘๐‘ฆ ร— ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ 1 = โˆ’๐œ๐จใ€–๐ฌ๐ž๐œใ€—^๐Ÿ ๐’š . ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ 1 = โˆ’(๐Ÿ +๐’„๐’๐’•๐Ÿ๐’š) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (โˆ’1)/(1 + ใ€–๐œ๐จ๐ญใ€—^๐Ÿโก๐’š ) Putting ๐‘๐‘œ๐‘กโก๐‘ฆ = ๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (โˆ’1)/(๐’™^๐Ÿ + ๐Ÿ) Hence (๐’…(ใ€–๐œ๐จ๐ญใ€—^(โˆ’๐Ÿ)โกใ€–๐’™)ใ€—)/๐’…๐’™ = (โˆ’๐Ÿ)/(๐’™^๐Ÿ + ๐Ÿ) (๐ด๐‘  ใ€– ๐‘๐‘œ๐‘ ๐‘’๐‘ใ€—^2โกใ€–๐‘ฆ= ใ€–1+ใ€—โกใ€–๐‘๐‘œ๐‘กใ€—^2โก๐‘ฆ ใ€—) As ๐‘ฆ = ใ€–๐‘๐‘œ๐‘กใ€—^(โˆ’1) ๐‘ฅ So, ๐’„๐’๐’•โก๐’š = ๐’™

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo