Last updated at Dec. 16, 2024 by Teachoo
Ex 12.3, 2 (Method 1) Divide the given polynomial by the given monomial. (iii) 8 (๐ฅ^3 ๐ฆ^2 ๐ง^2 +๐ฅ^2 ๐ฆ^3 ๐ง^2 + ๐ฅ^2 ๐ฆ^2 ๐ง^3) รท 4๐ฅ^2 ๐ฆ^2 ๐ง^28 (๐ฅ^3 ๐ฆ^2 ๐ง^2 +๐ฅ^2 ๐ฆ^3 ๐ง^2 + ๐ฅ^2 ๐ฆ^2 ๐ง^3) = 8 (๐ฅร๐ฅ^2 ๐ฆ^2 ๐ง^2) + (๐ฆ ร ๐ฅ^2 ๐ฆ^2 ๐ง^2) + (z ร ๐ฅ^2 ๐ฆ^2 ๐ง^2) Taking ๐ฅ^2 ๐ฆ^2 ๐ง^2 common = 8๐ฅ^2 ๐ฆ^2 ๐ง^2 (๐ฅ + y +z) Dividing (8 (๐ฅ^3 ๐ฆ^2 ๐ง^2 + ๐ฅ^2 ๐ฆ^3 ๐ง^2 + ๐ฅ^2 ๐ฆ^2 ๐ง^3))/(4๐ฅ^2 ๐ฆ^2 ๐ง^2 ) = (8ใ ๐ฅใ^2 ๐ฆ^2 ๐ง^2 (๐ฅ + ๐ฆ + ๐ง))/(4๐ฅ^2 ๐ฆ^2 ๐ง^2 ) = 8/4 ร (๐ฅ^2 ๐ฆ^2 ๐ง^2)/(๐ฅ^2 ๐ฆ^2 ๐ง^2 ) ร (๐ฅ + y + z) = 2 ร (๐ฅ + y + z) = 2 (๐ + y + z) Ex 12.3, 2 (Method 2) Divide the given polynomial by the given monomial. (iii) 8 (๐ฅ^3 ๐ฆ^2 ๐ง^2 +๐ฅ^2 ๐ฆ^3 ๐ง^2 + ๐ฅ^2 ๐ฆ^2 ๐ง^3) รท 4๐ฅ^2 ๐ฆ^2 ๐ง^28 (๐ฅร๐ฅ^2 ๐ฆ^2 ๐ง^2) + (๐ฆ ร ๐ฅ^2 ๐ฆ^2 ๐ง^2) + (z ร ๐ฅ^2 ๐ฆ^2 ๐ง^2) = (8 (๐ฅ^3 ๐ฆ^2 ๐ง^2 + ๐ฅ^2 ๐ฆ^3 ๐ง^2 + ๐ฅ^2 ๐ฆ^2 ๐ง^3))/(4๐ฅ^2 ๐ฆ^2 ๐ง^2 ) = (๐๐^๐ ๐^๐ ๐^๐)/(๐๐^๐ ๐^๐ ๐^๐ ) + (๐๐^๐ ๐^๐ ๐^๐)/(๐๐^๐ ๐^๐ ๐^๐ ) + (๐๐^๐ ๐^๐ ๐^๐)/(๐๐^๐ ๐^๐ ๐^๐ ) = 2๐ฅ + 2y + 2z Taking (x + y + z) common = 2 (๐ + y + z)