Factorisation using identities
Example 4
Example 5 Important
Example 6
Example 8
Example 7 Important
Ex 12.2, 1 (i)
Ex 12.2, 1 (ii)
Ex 12.2, 1 (iii) Important
Ex 12.2, 1 (v)
Ex 12.2, 1 (viii)
Ex 12.2, 1 (vi)
Ex 12.2, 1 (iv) Important
Ex 12.2, 1 (vii) Important
Ex 12.2, 2 (i)
Ex 12.2, 2 (iii)
Ex 12.2, 2 (vi)
Ex 12.2, 2 (ii) Important
Ex 12.2, 2 (iv) Important
Ex 12.2, 2 (v)
Ex 12.2, 2 (vii) Important
Ex 12.2, 2 (viii) Important
Ex 12.2, 4 (i)
Ex 12.2, 4 (ii) Important
Ex 12.2, 4 (iii)
Ex 12.2, 4 (iv) Important
Ex 12.2, 4 (v) Important You are here
Last updated at April 16, 2024 by Teachoo
Ex 12.2, 4 Factorise. (v) 𝑎^4 – 2𝑎^2 𝑏^2 + 𝑏^4𝑎^4 – 2𝑎^2 𝑏^2 + 𝑏^4 = (𝑎^2 )^2 − 2𝑎^2 𝑏^2+(𝑏^2 )^2 = (𝑎^2 )^2 +(𝑏^2 )^2−2 (𝑎^2×𝑏^2 ) Using (𝒙 − 𝒚)^𝟐=𝑥^2+𝑦^2 − 2xy Here 𝑥=𝑎^2 and y = 𝑏^2 = (𝑎^2 − b^2 )^2 Using 𝒙^𝟐 − 𝒚^𝟐=(𝑥+𝑦)(𝑥 − y) Here 𝑥=𝑎 and y = 𝑏 = [(𝑎+𝑏) (𝑎 − b)]^2 = (𝒂+𝒃)^𝟐 (𝒂 − 𝒃)^𝟐