Factorisation using identities
Example 4
Example 5 Important
Example 6
Example 8
Example 7 Important
Ex 12.2, 1 (i)
Ex 12.2, 1 (ii)
Ex 12.2, 1 (iii) Important
Ex 12.2, 1 (v)
Ex 12.2, 1 (viii)
Ex 12.2, 1 (vi)
Ex 12.2, 1 (iv) Important
Ex 12.2, 1 (vii) Important
Ex 12.2, 2 (i)
Ex 12.2, 2 (iii)
Ex 12.2, 2 (vi)
Ex 12.2, 2 (ii) Important
Ex 12.2, 2 (iv) Important
Ex 12.2, 2 (v)
Ex 12.2, 2 (vii) Important
Ex 12.2, 2 (viii) Important
Ex 12.2, 4 (i)
Ex 12.2, 4 (ii) Important
Ex 12.2, 4 (iii) You are here
Ex 12.2, 4 (iv) Important
Ex 12.2, 4 (v) Important
Last updated at April 16, 2024 by Teachoo
Ex 12.2, 4 Factorise. (iii) 𝑥^4 – 〖"(y + z)" 〗^4𝑥^4 – 〖"(y + z)" 〗^4 = (𝑥^2 )^2 −((〖𝑦+𝑧)〗^2 )^2 Using 𝒂^𝟐 − 𝒃^𝟐 = (a + b) (a − b) Here 𝑎=𝑥^2 and b = (𝑥−𝑧)^2 = [𝑥^2+(𝑦+ z)^2 ] [𝑥^2 −(𝑦+ z)^2] Again Using 𝒂^𝟐 − 𝒃^𝟐 = (a + b) (a − b) Here 𝑎=𝑥 and b = (𝑦+𝑧) = [𝑥^2+(𝑦+ z)^2 ] (𝑥−(𝑦+𝑧))(𝑥+(𝑦+𝑧)) = [𝒙^𝟐+(𝒚+ 𝒛)^𝟐 ] (𝒙−𝒚−𝒛)(𝒙+𝒚+𝒛)