Factorisation using identities
Example 4
Example 5 Important
Example 6
Example 8
Example 7 Important
Ex 12.2, 1 (i)
Ex 12.2, 1 (ii)
Ex 12.2, 1 (iii) Important
Ex 12.2, 1 (v)
Ex 12.2, 1 (viii)
Ex 12.2, 1 (vi)
Ex 12.2, 1 (iv) Important
Ex 12.2, 1 (vii) Important
Ex 12.2, 2 (i)
Ex 12.2, 2 (iii)
Ex 12.2, 2 (vi)
Ex 12.2, 2 (ii) Important
Ex 12.2, 2 (iv) Important
Ex 12.2, 2 (v)
Ex 12.2, 2 (vii) Important
Ex 12.2, 2 (viii) Important
Ex 12.2, 4 (i)
Ex 12.2, 4 (ii) Important You are here
Ex 12.2, 4 (iii)
Ex 12.2, 4 (iv) Important
Ex 12.2, 4 (v) Important
Last updated at April 16, 2024 by Teachoo
Ex 12.2, 4 Factorise. (ii) 𝑝^4 – 81𝑝^4 – 81 = (𝑝^2 )^2 − (9)^2 Using 𝒂^𝟐 − 𝒃^𝟐 = (a + b) (a − b) Here 𝑎=𝑝^2 and b = 9 = (𝑝^2+9) (𝑝^2−9) = (𝑝^2+9) (𝑝^2−3^2) Again Using 𝒂^𝟐 − 𝒃^𝟐 = (a + b) (a − b) Here 𝑎 = p and b = 3 = (𝑝^2+9) (𝑝+3) (𝑝−3) = (𝒑 − 𝟑) (𝒑+𝟑) (𝒑^𝟐+ 𝟗)