Factorisation using identities
Example 4
Example 5 Important
Example 6
Example 8
Example 7 Important
Ex 12.2, 1 (i)
Ex 12.2, 1 (ii)
Ex 12.2, 1 (iii) Important
Ex 12.2, 1 (v)
Ex 12.2, 1 (viii)
Ex 12.2, 1 (vi)
Ex 12.2, 1 (iv) Important
Ex 12.2, 1 (vii) Important
Ex 12.2, 2 (i)
Ex 12.2, 2 (iii)
Ex 12.2, 2 (vi)
Ex 12.2, 2 (ii) Important
Ex 12.2, 2 (iv) Important
Ex 12.2, 2 (v)
Ex 12.2, 2 (vii) Important
Ex 12.2, 2 (viii) Important
Ex 12.2, 4 (i) You are here
Ex 12.2, 4 (ii) Important
Ex 12.2, 4 (iii)
Ex 12.2, 4 (iv) Important
Ex 12.2, 4 (v) Important
Last updated at Dec. 16, 2024 by Teachoo
Ex 12.2, 4 Factorise. (i) 𝑎^4 – 𝑏^4𝑎^4 – 𝑏^4 = (𝑎^2 )^2 − (𝑏^2 )^2 Using 𝒙^𝟐 − 𝒚^𝟐 = (x + y) (x − y) Here 𝑥=𝑎^2 and y = 𝑏^2 = (𝑎^2+𝑏^2 ) (𝑎^2 − b^2) Using 𝒙^𝟐 − 𝒚^𝟐 = (x + y) (x − y) Here 𝑥=𝑎 and y = 𝑏 = (𝑎^2+𝑏^2 ) (𝑎+𝑏) (𝑎 − b) = (𝒂 − 𝒃) (𝒂+𝒃) (𝒂^𝟐− 𝒃^𝟐)