Factorisation using identities
Example 4
Example 5 Important
Example 6
Example 8
Example 7 Important
Ex 12.2, 1 (i)
Ex 12.2, 1 (ii)
Ex 12.2, 1 (iii) Important
Ex 12.2, 1 (v)
Ex 12.2, 1 (viii)
Ex 12.2, 1 (vi)
Ex 12.2, 1 (iv) Important
Ex 12.2, 1 (vii) Important
Ex 12.2, 2 (i)
Ex 12.2, 2 (iii)
Ex 12.2, 2 (vi)
Ex 12.2, 2 (ii) Important
Ex 12.2, 2 (iv) Important You are here
Ex 12.2, 2 (v)
Ex 12.2, 2 (vii) Important
Ex 12.2, 2 (viii) Important
Ex 12.2, 4 (i)
Ex 12.2, 4 (ii) Important
Ex 12.2, 4 (iii)
Ex 12.2, 4 (iv) Important
Ex 12.2, 4 (v) Important
Last updated at April 16, 2024 by Teachoo
Ex 12.2, 2 Factorise. (iv) 16𝑥^5 – 144𝑥^316𝑥^5 – 144𝑥^3 = 〖16𝑥〗^2 𝑥^3−144𝑥^3 Taking 𝑥^3 common, = 𝑥^3 (16𝑥^2−144) = 𝒙^𝟑 ((𝟒𝒙)^𝟐−(𝟏𝟐)^𝟐 ) Using 𝒂^𝟐− 𝒃^𝟐 = (a + b) (a − b) Here a = 4x and b = 12 = 𝑥^3 (4𝑥+12) (4𝑥−12) = 𝑥^3 (4𝑥+12) (4𝑥−12) Both have 4 as common factor = 𝑥^3 × 4 (𝑥 + 3) × 4 (𝑥 − 3) = 𝑥^3 × 4 × 4 (𝑥 + 3) (𝑥 − 3) = 16𝒙^𝟑 (𝒙 + 3) (𝒙 − 3)