Factorisation using identities
Example 4
Example 5 Important
Example 6
Example 8
Example 7 Important
Ex 12.2, 1 (i)
Ex 12.2, 1 (ii)
Ex 12.2, 1 (iii) Important
Ex 12.2, 1 (v)
Ex 12.2, 1 (viii)
Ex 12.2, 1 (vi)
Ex 12.2, 1 (iv) Important
Ex 12.2, 1 (vii) Important
Ex 12.2, 2 (i)
Ex 12.2, 2 (iii)
Ex 12.2, 2 (vi)
Ex 12.2, 2 (ii) Important You are here
Ex 12.2, 2 (iv) Important
Ex 12.2, 2 (v)
Ex 12.2, 2 (vii) Important
Ex 12.2, 2 (viii) Important
Ex 12.2, 4 (i)
Ex 12.2, 4 (ii) Important
Ex 12.2, 4 (iii)
Ex 12.2, 4 (iv) Important
Ex 12.2, 4 (v) Important
Last updated at April 16, 2024 by Teachoo
Ex 12.2, 2 Factorise. (ii) 63𝑎^2 – 112𝑏^263𝑎^2 – 112𝑏^2 = (7 × 9)𝑎^2− (7 × 16)𝑏^2 Taking 7 common, = 7 (9𝑎^2−16b^2) = 7 ((𝟑𝒂^𝟐 )−(𝟒𝒃)^𝟐 ) Using 𝒙^𝟐−𝒚^𝟐=(𝑥+𝑦)(𝑥−𝑦) Here 𝑥=3𝑎 and 𝑦=4𝑏 = 7 (𝟑𝒂+𝟒𝒃) (𝟑𝒂−𝟒𝒃)