Factorisation using identities
Example 4
Example 5 Important
Example 6
Example 8
Example 7 Important
Ex 12.2, 1 (i)
Ex 12.2, 1 (ii)
Ex 12.2, 1 (iii) Important
Ex 12.2, 1 (v)
Ex 12.2, 1 (viii) You are here
Ex 12.2, 1 (vi)
Ex 12.2, 1 (iv) Important
Ex 12.2, 1 (vii) Important
Ex 12.2, 2 (i)
Ex 12.2, 2 (iii)
Ex 12.2, 2 (vi)
Ex 12.2, 2 (ii) Important
Ex 12.2, 2 (iv) Important
Ex 12.2, 2 (v)
Ex 12.2, 2 (vii) Important
Ex 12.2, 2 (viii) Important
Ex 12.2, 4 (i)
Ex 12.2, 4 (ii) Important
Ex 12.2, 4 (iii)
Ex 12.2, 4 (iv) Important
Ex 12.2, 4 (v) Important
Last updated at April 16, 2024 by Teachoo
Ex 12.2, 1 Factorise the following expressions. (viii) 𝑎^4 + 2𝑎^2 𝑏^2 + 𝑏^4𝑎^4 + 2𝑎^2 𝑏^2 + 𝑏^4 Using (𝑎^𝑚 )^𝑛=𝑎^(𝑚 × 𝑛) ∴ (𝑎^2 )^2 = 𝑎^(2 × 2)=𝑎^4 = (𝑎^2 )^2+〖2𝑎〗^2 𝑏^2+(𝑏^2 )^2 = (𝒂^𝟐 )^𝟐+𝟐(𝒂^𝟐×𝒃^𝟐)+(𝒃^𝟐 )^𝟐 =(𝑎^2 )^2+(𝑏^2 )^2+2(𝑎^2×𝑏^2) Using (𝒙+𝒚)^𝟐=𝑥^2+𝑦^2+2𝑥𝑦 Here, 𝑥 = 𝑎^2 and y = 𝑏^2 = (𝒂^𝟐+𝒃^𝟐 )^𝟐