Factorisation using identities
Example 4
Example 5 Important
Example 6
Example 8
Example 7 Important
Ex 12.2, 1 (i)
Ex 12.2, 1 (ii)
Ex 12.2, 1 (iii) Important
Ex 12.2, 1 (v)
Ex 12.2, 1 (viii)
Ex 12.2, 1 (vi)
Ex 12.2, 1 (iv) Important
Ex 12.2, 1 (vii) Important You are here
Ex 12.2, 2 (i)
Ex 12.2, 2 (iii)
Ex 12.2, 2 (vi)
Ex 12.2, 2 (ii) Important
Ex 12.2, 2 (iv) Important
Ex 12.2, 2 (v)
Ex 12.2, 2 (vii) Important
Ex 12.2, 2 (viii) Important
Ex 12.2, 4 (i)
Ex 12.2, 4 (ii) Important
Ex 12.2, 4 (iii)
Ex 12.2, 4 (iv) Important
Ex 12.2, 4 (v) Important
Last updated at April 16, 2024 by Teachoo
Ex 12.2, 1 Factorise the following expressions. (vii) 〖"(l + m)" 〗^2 – 4lm (Hint: Expand 〖"(l + m)" 〗^2 first)〖"(l + m)" 〗^2 – 4lm = 𝑙^2+𝑚^2+2𝑙𝑚 −4𝑙𝑚 = 𝑙^2+𝑚^2+𝑙𝑚 (2−4) = 𝒍^𝟐+𝒎^𝟐−𝟐𝒍𝒎 = (𝒍−𝒎)^𝟐 Using (𝒂+𝒃)^𝟐=𝑎^2+𝑏^2+2𝑎𝑏 Here, 𝑎 = l and b = m Using (𝒂−𝒃)^𝟐=𝑎^2+𝑏^2−2𝑎𝑏 Here, 𝑎 = l and b = m