Examples
Example 2 Important
Example 3
Example 4 Important
Example 5 (i)
Example 5 (ii) Important
Example 5 (iii)
Example 5 (iv) Important
Example 6
Example 7 Important
Example 8 (i) Important
Example 8 (ii)
Example 8 (iii) Important
Example 9 (i)
Example 9 (ii) Important
Example 10 Important
Example 11 (i)
Example 11 (ii)
Example 11 (iii)
Example 11 (iv) Important
Example 11 (v) Important
Example 12 (i) You are here
Example 12 (ii) Important
Example 12 (iii) Important
Example 13 (i)
Example 13 (ii) Important
Example 13 (iii)
Example 13 (iv) Important
Last updated at April 16, 2024 by Teachoo
Example 12 Simplify and write the answer in the exponential form (i) (〖12〗^4 × 〖 9〗^3 × 4)/(6^3 ×〖 8〗^2 × 27) (〖12〗^4 × 9^3 × 4)/(6^3 × 8^2 × 27) = ((2 × 2 × 3)^4 × (3 × 3)^3 × (2 × 2))/((2 × 3)^3 × 〖(2 × 2 × 2)〗^2 × (3 × 3 × 3)) = ((2^2 × 3)^4 × (3^2 )^3 × (2^2 ))/((2 × 3)^3 × 〖(2^3)〗^2 × (3^3)) = ((2^2 )^4 × (3)^4 × (3^2 )^3 × (2^2))/(2^3 × 3^3 × (2^3 )^2×〖 3〗^3 ) = (2^(2 × 4) × 3^4 × 3^(2 × 3) ×〖 2〗^2)/(2^3 × 3^3 × 2^(3 × 2) × 3^3 ) [(a × b)m = am × bm] [(am)n = am × n] = (2^8 × 3^4 × 3^6 ×〖 2〗^2)/(2^3 × 3^3 × 2^6 × 3^3 ) = ((2^8 ×〖 2〗^2 ) × (3^4 × 3^6))/((2^3 × 2^6 ) × (3^3 × 3^3)) = (2^(8 + 2) × 3^(4 + 6))/(2^(3 + 6) ×〖 3〗^(3 + 3) ) = 2^10/2^9 × 3^10/3^6 = 210 − 9 × 310 − 6 = 21 × 34 = 2 × 81 = 162 (Using am × an = am + n) (Using 𝑎^𝑚/𝑎^𝑛 = am − n)