Question 24 (OR 2 nd question)
Find the inverse of the following matrix using elementary transformations
[2 -1 3 -5 3 1 -3 2 3]
CBSE Class 12 Sample Paper for 2019 Boards
Question 1 Important
Question 2
Question 3
Question 4 (Or 1st) Important
Question 4 (Or 2nd)
Question 5
Question 6
Question 7 Important
Question 8 (Or 1st) Important
Question 8 (Or 2nd)
Question 9
Question 10 (Or 1st) Important
Question 10 (Or 2nd)
Question 11 Important
Question 12 (Or 1st)
Question 12 (Or 2nd)
Question 13 (Or 1st) Important
Question 13 (Or 2nd)
Question 14 Important
Question 15
Question 16 (Or 1st)
Question 16 (Or 2nd) Important
Question 17
Question 18
Question 19 Important
Question 20 Important
Question 21 (Or 1st)
Question 21 (Or 2nd) Important
Question 22
Question 23 Important
Question 24 (Or 1st)
Question 24 (Or 2nd) Important You are here
Question 25
Question 26 (Or 1st) Important
Question 26 (Or 2nd)
Question 27 (Or 1st) Important
Question 27 (Or 2nd) Important
Question 28
Question 29 Important
CBSE Class 12 Sample Paper for 2019 Boards
Last updated at April 16, 2024 by Teachoo
Question 24 (OR 2 nd question)
Find the inverse of the following matrix using elementary transformations
[2 -1 3 -5 3 1 -3 2 3]
Question 24 (OR 2nd question) Find the inverse of the following matrix using elementary transformations [■8(2&−1&3@−5&3&1@−3&2&3)] Let A = [■8(2&−1&3@−5&3&1@−3&2&3)] We know that A = IA [■8(2&−1&3@−5&3&1@−3&2&3)]= [■8(1&0&0@0&1&0@0&0&1)] A R1 → R1 + 𝑹_𝟐/𝟓 [■8(1&(−2)/5&16/5@−5&3&1@−3&2&3)]= [■8(1&1/5&0@0&1&0@0&0&1)] A R2 → R2 + 5R1 [■8(1&(−2)/5&16/5@−5+5(1)&3+5((−2)/5)&1+5(16/5)@−3&2&3)]= [■8(1&1/5&0@0+5(1)&1+5(1/5)&0+5(0)@0&0&1)] A [■8(1&(−2)/5&16/5@0&1&17@−3&2&3)]= [■8(1&1/5&0@5&2&0@0&0&1)] A R3 → R3 + 3R1 [■8(1&(−2)/5&16/5@0&1&17@−3+3(1)&2+3(−2/5)&3+3(16/5) )]= [■8(1&1/5&0@5&2&0@0+3(1)&0+3(1/5)&1+3(0))] A [■8(1&(−2)/5&16/5@0&1&17@0&4/5&63/5)]= [■8(1&1/5&0@5&2&0@3&3/5&1)] A R1 → R1 + 𝟐/𝟓R2 [■8(1+2/5(0)&(−2)/5+2/5(1)&16/5+2/5(17)@0&1&17@0&4/5&63/5)]= [■8(1+2/5(5)&1/5+2/5(2)&0+2/5(0)@5&2&0@3&3/5&1)] A [■8(1&0&10@0&1&17@0&4/5&63/5)]= [■8(3&1&0@5&2&0@3&3/5&1)] A R3 → R3 – 𝟒/𝟓R2 [■8(1&0&10@0&1&17@0−4/5(0)&4/5−4/5(1)&63/5−4/5(17))]= [■8(3&1&0@5&2&0@3−4/5(5)&3/5−4/5(2)&1−4/5(0))] A [■8(1&0&10@0&1&17@0&0&−1)]= [■8(3&1&0@5&2&0@−1&−1&1)] A R3 → R3 × –1 [■8(1&0&10@0&1&17@0&0&1)]= [■8(3&1&0@5&2&0@1&1&−1)] A R1 → R1 – 10R3 [■8(1−10(0)&0−10(0)&10−10(1)@0&1&17@0&0&1)]= [■8(3−10(1)&1−10(1)&0−10(−1)@5&2&0@1&1&−1)] A [■8(1&0&0@0&1&17@0&0&1)]= [■8(−7&−9&10@5&2&0@1&1&−1)] A R2 → R2 – 17R3 [■8(1&0&0@0−17(0)&1−17(0)&17−17(1)@0&0&1)]= [■8(−7&−9&10@5−17(1)&2−17(1)&0−17(−1)@1&1&−1)] A [■8(1&0&0@0&1&0@0&0&1)] = [■8(−7&−9&10@−12&−15&17@1&1&−1)] A "I"= [■8(−7&−9&10@−12&−15&17@1&1&−1)] A This is similar to I = A-1A Thus, A-1 = [■8(−7&−9&10@−12&−15&17@1&1&−1)]