Question 13 (OR 1 st question)
Prove that the function f:[0, ∞) → R given by f(x) = 9x 2 + 6x – 5 is not invertible. Modify the codomain of the function f to make it invertible, and hence find f –1 .
CBSE Class 12 Sample Paper for 2019 Boards
Question 1 Important
Question 2
Question 3
Question 4 (Or 1st) Important
Question 4 (Or 2nd)
Question 5
Question 6
Question 7 Important
Question 8 (Or 1st) Important
Question 8 (Or 2nd)
Question 9
Question 10 (Or 1st) Important
Question 10 (Or 2nd)
Question 11 Important
Question 12 (Or 1st)
Question 12 (Or 2nd)
Question 13 (Or 1st) Important You are here
Question 13 (Or 2nd)
Question 14 Important
Question 15
Question 16 (Or 1st)
Question 16 (Or 2nd) Important
Question 17
Question 18
Question 19 Important
Question 20 Important
Question 21 (Or 1st)
Question 21 (Or 2nd) Important
Question 22
Question 23 Important
Question 24 (Or 1st)
Question 24 (Or 2nd) Important
Question 25
Question 26 (Or 1st) Important
Question 26 (Or 2nd)
Question 27 (Or 1st) Important
Question 27 (Or 2nd) Important
Question 28
Question 29 Important
CBSE Class 12 Sample Paper for 2019 Boards
Last updated at Dec. 16, 2024 by Teachoo
Question 13 (OR 1 st question)
Prove that the function f:[0, ∞) → R given by f(x) = 9x 2 + 6x – 5 is not invertible. Modify the codomain of the function f to make it invertible, and hence find f –1 .
Question 13 (OR 1st question) Prove that the function f:[0, ∞) → R given by f(x) = 9x2 + 6x – 5 is not invertible. Modify the codomain of the function f to make it invertible, and hence find f–1 . If f(x) is invertible f(x) is one-one f(x) is onto First, let us check if f(x) is onto Let f(x) = y y = 9x2 + 6x – 5 0 = 9x2 + 6x – 5 – y 9x2 + 6x – 5 – y = 0 9x2 + 6x – (5 + y) = 0 Comparing equation with ax2 + bx + c = 0 a = 9, b = 6 , c = – (5 + y) x = (−𝑏 ± √(𝑏^2 − 4𝑎𝑐))/2𝑎 Putting values x = (− 6 ± √(6^2 − 4(9) (−(5 + 𝑦)) ))/2(9) x = (− 6 ± √(36 + 36(5 + 𝑦)))/18 x = (− 6 ± √(36(1 + (5 + 𝑦)) ))/18 x = (− 6 ± √(36(6 + 𝑦) ))/18 x = (− 6 ± 6 √((6 + 𝑦)))/18 x = 6[− 1 ± √((6 + 𝑦) )]/18 x = (− 1 ± √((6 + 𝑦) ))/3 So, x = (− 1 − √((6 + 𝑦) ))/3 or (− 1 + √((6 + 𝑦) ))/3 As x ∈ [0, ∞) , i.e., x is a positive real number x cannot be equal to (−1 − √((6 + 𝑦) ))/3 Hence, x = (−1 + √((6 + 𝑦) ))/3 Since y ∈ R For y = –6 x = (−1 + √((6 − 6) ))/3 = (−1)/3 Since x = (−1)/3 ∉ [0, ∞) So, f is not invertible To make it invertible, x ≥ 0 (−1 + √((6 + 𝑦) ))/3 ≥ 0 –1 + √((6 + 𝑦) ) ≥ 0 √((6 + 𝑦) ) ≥ 0 + 1 √((6 + 𝑦) ) ≥ 1 6 + y ≥ 1 y ≥ 1 – 6 y ≥ –5 So, our range should be [–5, ∞) Now, our function is f: [0,∞) → [–5, ∞) f(x) = 9x2 + 6x – 5 We need to first check if it is one-one and onto Checking one-one f (x1) = 9(x1)2 + 6x1 – 5 f (x2) = 9(x2)2 + 6x2 – 5 Putting f (x1) = f (x2) 9(x1)2 + 6x1 – 5 = 9(x2)2 + 6x2 – 5 9(x1)2 – 9(x2)2 + 6x1 – 6x2 = – 5 + 5 9(x1)2 – 9(x2)2 + 6x1 – 6x2 = 0 Now, our function is f: [0,∞) → [–5, ∞) f(x) = 9x2 + 6x – 5 We need to first check if it is one-one and onto Checking one-one f (x1) = 9(x1)2 + 6x1 – 5 f (x2) = 9(x2)2 + 6x2 – 5 Putting f (x1) = f (x2) 9(x1)2 + 6x1 – 5 = 9(x2)2 + 6x2 – 5 9(x1)2 – 9(x2)2 + 6x1 – 6x2 = – 5 + 5 9(x1)2 – 9(x2)2 + 6x1 – 6x2 = 0 (x1 – x2) = 0 ⇒ x1 = x2 (3x1 + 3x2 + 2) = 0 ⇒ 3x1 = –3x2 – 2 Since x ∈ [0, ∞) i.e. x is always positive, Hence 3x1 = – 3x2 – 2 is not true Hence, if f (x1) = f (x2) , then x1 = x2 ∴ f is one-one Now, Checking onto f(x) = 9x2 + 6x – 5 Putting f(x) = y, We get x = (−1 + √((6 + 𝑦) ))/3 Since for y ∈ [–5, ∞) x ∈ [0, ∞) Thus, f is onto Since the function is one-one and onto ∴ It is invertible Calculating inverse For finding inverse, we put f(x) = y and find x in terms of y We have done that while proving onto x = (−1 + √((6 + 𝑦) ))/3 Let g(y) = (−1 + √((6 + 𝑦) ))/3 where g: [–5,∞ ) → [0, ∞) So, inverse of f = f–1 = (−𝟏 + √((𝟔 + 𝒚) ))/𝟑