Question 7
Find: ∫ (x 2 + sin 2 ⁡x) sec 2 ⁡x / (1 + x 2 ) dx

CBSE Class 12 Sample Paper for 2019 Boards
CBSE Class 12 Sample Paper for 2019 Boards
Last updated at Dec. 16, 2024 by Teachoo
Question 7
Find: ∫ (x 2 + sin 2 ⁡x) sec 2 ⁡x / (1 + x 2 ) dx
Transcript
Question 7 Find: ∫1▒((𝑥^2 + sin^2𝑥 ) sec^2𝑥)/(1 + 𝑥^2 ) dx ∫1▒((𝑥^2 + sin^2𝑥 ) sec^2𝑥)/(1 + 𝑥^2 ) dx = ∫1▒((𝑥^2 + sin^2𝑥 )(1/cos^2𝑥 ) )/(1 + 𝑥^2 ) dx = ∫1▒((𝑥^2 + sin^2𝑥 ) )/((1 + 𝑥^2 ) cos^2𝑥 ) dx Writing sin2 x = 1 – cos2 x = ∫1▒((𝑥^2 + 1 − cos^2𝑥 ) )/((1 + 𝑥^2 ) cos^2𝑥 ) dx = ∫1▒((1 + 𝑥^2 ) − cos^2𝑥 )/((1 + 𝑥^2 ) cos^2𝑥 ) dx = ∫1▒((1 + 𝑥^2 ) )/((1 + 𝑥^2 ) cos^2𝑥 ) dx – ∫1▒(cos^2𝑥 )/((1 + 𝑥^2 ) cos^2𝑥 ) dx = ∫1▒1/cos^2𝑥 dx – ∫1▒(1 )/((1 + 𝑥^2 ) ) dx = ∫1▒〖𝑠𝑒𝑐〗^2𝑥 dx – ∫1▒(1 )/((1 + 𝑥^2 ) ) dx = 𝒕𝒂𝒏 𝒙−〖𝒕𝒂𝒏〗^(−𝟏) 𝒙 + C