Question 14
Find the zeroes of the following polynomial:
5√5 x 2 + 30x + 8√5
Here, we solve this question by two methods
- Method 1 - Using Splitting the middle term
- Method 2 - Using D Formula



CBSE Class 10 Sample Paper for 2019 Boards
CBSE Class 10 Sample Paper for 2019 Boards
Last updated at Dec. 16, 2024 by Teachoo
Question 14
Find the zeroes of the following polynomial:
5√5 x 2 + 30x + 8√5
Here, we solve this question by two methods
Transcript
Question 14 (Method 1 – Using Splitting the middle term) Find the zeroes of the following polynomial: 5√5 x2 + 30x + 8√5 5√5 x2 + 30x + 8√5 Factorising by splitting the middle term = 5√5 x2 + 20x + 10x + 8√5 = 5√5 x2 + 20x + (5 × 2)x + 8√5 = 5√5 x2 + 20x + (√5 × √5 × 2)x + 8√5 = 5x(√5 x + 4) + √5 × 2(√5 x + 4) = 5x(√5 x + 4) + 2√5 (√5 x + 4) = (5x + 2√5) (√5x + 4) Splitting the middle term method We need to find two numbers whose Sum = 30 Product = 5√5 × 8 √5 = 5 × 8 × √5 × √5 = 40 × 5 = 200 Zeroes are 5x + 2√5 = 0 5x = –2√5 x = (−𝟐√𝟓)/𝟓 √5x + 4 = 0 √5x = –4 x = (−4)/√5 x = (−4)/√5 × √5/√5 x = (−𝟒√𝟓)/𝟓 √5x + 4 = 0 √5x = –4 x = (−4)/√5 x = (−4)/√5 × √5/√5 x = (−𝟒√𝟓)/𝟓 1 mark Question 14 (Method 2 – Using D formula) Find the zeroes of the following polynomial: 5√5 x2 + 30x + 8√5 5√5 x2 + 30x + 8√5 Comparing with ax2 + bx + c a = 5√5, b = 30, c = 8√5 Now, x = (−𝑏 ± √(𝑏^2 − 4𝑎𝑐))/2𝑎 = (−30 ± √(〖(30)〗^2 − 4 × 5√5 × 8√5) )/(2 × 5√5) = (−30 ± √(900 − 4 × 5 × 8 × √5 × √5) )/(10√5) = (−30 ± √(900 − 4 × 5 × 8 × 5))/(10√5) = (−30 ± √(900 −20 × 40))/(10√5) = (−30 ± √(900 − 800))/(10√5) = (−30 ± √100)/(10√5) = (−30 ± 10)/(10√5) 1.5 marks Therefore, x = (−30 + 10)/(10√5) x = (−20)/(10√5) x = (−2)/√5 x = (−2)/√5 × √5/√5 x = (−𝟐√𝟓)/𝟓 x = (−30 − 10)/(10√5) x = (−40)/(10√5) x = (−4)/√5 x = (−4)/√5 × √5/√5 x = (−𝟒√𝟓)/𝟓 . ∴ Zeroes are x = (−𝟐√𝟓)/𝟓, (−𝟒√𝟓)/𝟓 1.5 marks