












Sine and Cosine Formula
Sine and Cosine Formula
Last updated at Dec. 16, 2024 by Teachoo
Transcript
In any βABC, we have π^2=π^2+π^2β2ππ cosβ‘π΄ or cosβ‘π΄=(π^2 + π^2 β π^2)/2ππ π^2=π^2+π^2β2ππ cosβ‘π΅ or cosβ‘π΅=(π^2 + π^2 β π^2)/2ππ π^2=π^2+π^2β2ππ cosβ‘πΆ or cosβ‘πΆ=(π^2 + π^2 β π^2)/2ππ Proof of Cosine Rule There can be 3 cases - Acute Angled Triangle, Obtuse Angled Triangle, Right Angled Triangle Proof for Acute Angled Triangle Letβs draw perpendicular AD to BC In right triangle ABD cos B=π΅π·/π΄π΅ cos B=π΅π·/π π©π=π πππβ‘π© In right triangle ACD cos C=πΆπ·/π΄πΆ cos C=πΆπ·/π πͺπ=π πππβ‘πͺ In βACD, By Pythagoras theorem γπ΄πΆγ^2=π΄π·^2+πΆπ·^2 γπ΄πΆγ^2=π΄π·^2+(π΅πΆβπ΅π·)^2 γπ΄πΆγ^2=π΄π·^2+π΅πΆ^2+π΅π·^2β2π΅πΆ . π΅π· γπ΄πΆγ^2=π΅πΆ^2+(π¨π«^π+π©π«^π )β2π΅πΆ . π΅π· γπ΄πΆγ^2=π΅πΆ^2+π¨π©^πβ2π΅πΆ . π΅π· π^π=π^π+π^πβπππ γ πππγβ‘π© Similarly, we can prove others as well Proof for Obtuse Angled Triangle Letβs draw perpendicular AD to extended BC In right triangle ABD cos β ABD=π΅π·/π΄π΅ cos (180Β°βB)=π΅π·/π βcos π΅=π΅π·/π π©π=βπ πππβ‘π© In right triangle ACD cos C=πΆπ·/π΄πΆ cos C=πΆπ·/π ππ«=π πππβ‘πͺ In βACD, By Pythagoras theorem γπ΄πΆγ^2=π΄π·^2+πΆπ·^2 γπ΄πΆγ^2=π΄π·^2+(π΅πΆ+π΅π·)^2 γπ΄πΆγ^2=π΄π·^2+π΅πΆ^2+π΅π·^2+2π΅πΆ . π΅π· γπ΄πΆγ^2=π΅πΆ^2+(π¨π«^π+π©π«^π )+2π΅πΆ . π΅π· γπ΄πΆγ^2=π΅πΆ^2+π¨π©^π+2π΅πΆ . π΅π· π^2=π^2+π^2+2 π Γ (βπ πππ β‘π΅ ) π^π=π^π+π^πβπππ πππβ‘π© Similarly, we can prove others as well Proof for Right Angled TriangleSince β B = 90Β° cos B = 0 In βABC, By Pythagoras theorem γπ΄πΆγ^2=π΄π·^2+πΆπΆ^2 π^2=π^2+π^2 π^π=π^π+π^πβπππ πππβ‘π© Similarly, we can prove others as well Letβs do some Examples!! Find the third side By Law of Cosines, π^2=π^2+π^2β2ππ cosβ‘π΄ Putting values π^2=9^2+12^2β2 Γ 9 Γ 12 Γ cosβ‘γ87Β°γ π^2=81+144β216 Γ 0.05 π^2=225β11.3 π=β213.7 πβππ.ππ One more Example ! Find the missing angle By Law of Cosines, π^2=π^2+π^2β2ππ cosβ‘π΅ Putting values 20^2=60^2+50^2β2 Γ 60 Γ 50 Γ cosβ‘π΅ 400=3600+2500β6000 cosβ‘π΅ 6000 cosβ‘π΅=6100β400 6000 cosβ‘π΅=5700 cosβ‘π΅=5700/6000 cosβ‘π΅=57/60 π΅=cos^(β1)β‘γ19/20γ π΅=18.19Β° When to use Sine and Cosine Rule?Sine Rule is used when we are given 2 Angles and 1 Side (ASA) 2 Sides and 1 non-included angle (SSA) Cosine Rule is used when we are given 2 Sides and 1 included angle (SAS) 3 Sides (SSS)