Law of Cosine (Cosine Law)
Last updated at Dec. 16, 2024 by Teachoo
Sine and Cosine Formula
Sine and Cosine Formula
Last updated at Dec. 16, 2024 by Teachoo
In any βABC, we have π^2=π^2+π^2β2ππ cosβ‘π΄ or cosβ‘π΄=(π^2 + π^2 β π^2)/2ππ π^2=π^2+π^2β2ππ cosβ‘π΅ or cosβ‘π΅=(π^2 + π^2 β π^2)/2ππ π^2=π^2+π^2β2ππ cosβ‘πΆ or cosβ‘πΆ=(π^2 + π^2 β π^2)/2ππ Proof of Cosine Rule There can be 3 cases - Acute Angled Triangle, Obtuse Angled Triangle, Right Angled Triangle Proof for Acute Angled Triangle Letβs draw perpendicular AD to BC In right triangle ABD cos B=π΅π·/π΄π΅ cos B=π΅π·/π π©π=π πππβ‘π© In right triangle ACD cos C=πΆπ·/π΄πΆ cos C=πΆπ·/π πͺπ=π πππβ‘πͺ In βACD, By Pythagoras theorem γπ΄πΆγ^2=π΄π·^2+πΆπ·^2 γπ΄πΆγ^2=π΄π·^2+(π΅πΆβπ΅π·)^2 γπ΄πΆγ^2=π΄π·^2+π΅πΆ^2+π΅π·^2β2π΅πΆ . π΅π· γπ΄πΆγ^2=π΅πΆ^2+(π¨π«^π+π©π«^π )β2π΅πΆ . π΅π· γπ΄πΆγ^2=π΅πΆ^2+π¨π©^πβ2π΅πΆ . π΅π· π^π=π^π+π^πβπππ γ πππγβ‘π© Similarly, we can prove others as well Proof for Obtuse Angled Triangle Letβs draw perpendicular AD to extended BC In right triangle ABD cos β ABD=π΅π·/π΄π΅ cos (180Β°βB)=π΅π·/π βcos π΅=π΅π·/π π©π=βπ πππβ‘π© In right triangle ACD cos C=πΆπ·/π΄πΆ cos C=πΆπ·/π ππ«=π πππβ‘πͺ In βACD, By Pythagoras theorem γπ΄πΆγ^2=π΄π·^2+πΆπ·^2 γπ΄πΆγ^2=π΄π·^2+(π΅πΆ+π΅π·)^2 γπ΄πΆγ^2=π΄π·^2+π΅πΆ^2+π΅π·^2+2π΅πΆ . π΅π· γπ΄πΆγ^2=π΅πΆ^2+(π¨π«^π+π©π«^π )+2π΅πΆ . π΅π· γπ΄πΆγ^2=π΅πΆ^2+π¨π©^π+2π΅πΆ . π΅π· π^2=π^2+π^2+2 π Γ (βπ πππ β‘π΅ ) π^π=π^π+π^πβπππ πππβ‘π© Similarly, we can prove others as well Proof for Right Angled TriangleSince β B = 90Β° cos B = 0 In βABC, By Pythagoras theorem γπ΄πΆγ^2=π΄π·^2+πΆπΆ^2 π^2=π^2+π^2 π^π=π^π+π^πβπππ πππβ‘π© Similarly, we can prove others as well Letβs do some Examples!! Find the third side By Law of Cosines, π^2=π^2+π^2β2ππ cosβ‘π΄ Putting values π^2=9^2+12^2β2 Γ 9 Γ 12 Γ cosβ‘γ87Β°γ π^2=81+144β216 Γ 0.05 π^2=225β11.3 π=β213.7 πβππ.ππ One more Example ! Find the missing angle By Law of Cosines, π^2=π^2+π^2β2ππ cosβ‘π΅ Putting values 20^2=60^2+50^2β2 Γ 60 Γ 50 Γ cosβ‘π΅ 400=3600+2500β6000 cosβ‘π΅ 6000 cosβ‘π΅=6100β400 6000 cosβ‘π΅=5700 cosβ‘π΅=5700/6000 cosβ‘π΅=57/60 π΅=cos^(β1)β‘γ19/20γ π΅=18.19Β° When to use Sine and Cosine Rule?Sine Rule is used when we are given 2 Angles and 1 Side (ASA) 2 Sides and 1 non-included angle (SSA) Cosine Rule is used when we are given 2 Sides and 1 included angle (SAS) 3 Sides (SSS)