Question 19
Find the particular solution of the differential equation :
yey dx = (y3 + 2xey) dy, y(0) = 1
Given equation
yey dx = (y3 + 2xey) dy
We try to put in form ππ¦/ππ₯ + Py = Q or ππ₯/ππ¦ + P1 x = Q1,
yey dx = (y3 + 2xey) dy
(π¦π^π¦)/((π¦3 + 2π₯π^π¦)) = ππ¦/ππ₯
ππ¦/ππ₯ = (π¦π^π¦)/((π¦3 + 2π₯π^π¦))
This is not of the form ππ¦/ππ₯ + Py = Q
β΄ We find ππ₯/ππ¦
ππ₯/ππ¦ = ((π¦^3 + 2π₯π^π¦))/(π¦π^π¦ )
ππ₯/ππ¦ = π¦^3/(π¦π^π¦ )+(2π₯π^π¦)/(π¦π^π¦ )
ππ₯/ππ¦ = π¦^2/π^π¦ +2π₯/π¦
ππ₯/ππ¦β2π₯/π¦ = π¦^2/π^π¦
ππ₯/ππ¦+((β2)/π¦)π₯ = π¦^2/π^π¦
Comparing with ππ₯/ππ¦ + P1 x = Q1
Where P1 = (β2)/π¦ & Q1 = π¦^2/π^π¦
Find Integrating factor,
IF = π^β«1βγπ1 ππ¦γ
= π^β«1β(β2ππ¦)/π¦
= π^(β2β«1βππ¦/π¦)
= π^(β2 logβ‘π¦ )
Using a log b = log ba
= π^(γlogβ‘π¦γ^(β2) )
= π¦^(β2)
= 1/π¦^2
Solution is
π₯ (IF) = β«1βγ(π1ΓπΌπΉ)ππ¦+πγ
π₯ Γ 1/π¦^2 = β«1βγπ¦^2/π^π¦ Γ1/π¦^2 ππ¦+πγ
π₯/π¦^2 = β«1βγ1/π^π¦ ππ¦+πγ
π₯/π¦^2 = β«1βγπ^(βπ¦) ππ¦+πγ
π₯/π¦^2 = β1 Γπ^(βπ¦)+π
π₯/π¦^2 = γβπγ^(βπ¦)+π
π₯ = γβπ¦^2 πγ^(βπ¦)+ππ¦^2
We need to find particular solution,
Putting x = 0, y = 1
0 = γβ1^2 πγ^(β1)+πγ(1)γ^2
0 = γβπγ^(β1)+π
π^(β1) =π
c=π^(β1)
c=1/π
Putting value of c in (2)
π₯ = γβπ¦^2 πγ^(βπ¦)+ππ¦^2
π₯ = γβπ¦^2 πγ^(βπ¦)+(1/π) π¦^2
π = γβπ^π πγ^(βπ)+π^π/π
Question 19
Show that (x β y)dy = (x + 2y)dx is a homogenous differential equation. Also, find the general solution of the given differential equation.
Theory
To prove homogenous
Step 1: Find ππ¦/ππ₯
Step 2: Put F(π₯ , π¦)=ππ¦/ππ₯ & Find F(ππ₯ ,ππ¦)
Step 3: Then solve using by putting π¦=π£π₯
Finding ππ¦/ππ₯
(x β y)dy = (x + 2y)dx
ππ¦/ππ₯=((π₯ + 2π¦)/(π₯ β π¦))
Now, Putting F(π₯ , π¦)=ππ¦/ππ₯ & Find F(ππ₯ ,ππ¦)
Let F(π₯ , π¦)=((π₯ + 2π¦)/(π₯ β π¦))
Finding F(ππ ,ππ)
F(ππ₯ ,ππ¦)=(ππ₯ + 2(ππ¦))/(ππ₯ βππ¦)
=π(π₯ + 2π¦)/(π (π₯ β π¦) )
=((π₯ + 2π¦))/(π₯ β π¦)
= F(π₯ , π¦)
Thus , F(ππ₯ ,ππ¦)="F" (π₯ , π¦)" "
=πΒ°" F" (π₯ , π¦)" "
Thus , "F" (π₯ , π¦)" is Homogeneous function of degree zero"
Therefore, the given Differential Equation is Homogeneous differential Equation
Step 3: Solving ππ¦/ππ₯ by Putting π¦=π£π₯
ππ¦/ππ₯=((π₯ + 2π¦)/(π₯ β π¦))
Let π¦=π£π₯
So , ππ¦/ππ₯=π(π£π₯)/ππ₯
ππ¦/ππ₯=ππ£/ππ₯ . π₯+π£ ππ₯/ππ₯
ππ¦/ππ₯=ππ£/ππ₯ π₯+π£
Putting ππ¦/ππ₯ πnd π¦/π₯ ππ (π) π.π.
ππ¦/ππ₯=(π₯ + 2π¦)/(π₯ β π¦)
ππ£/ππ₯ π₯+π£= (π₯ + 2 π£π₯)/(π₯ β π£π₯)
ππ£/ππ₯ π₯+π£= π₯(1 + 2π£)/π₯(1 β π£)
ππ£/ππ₯ π₯+π£= (1 + 2π£)/(1β π£)
ππ£/ππ₯ π₯= (1 + 2π£)/(1β π£)βπ£
ππ£/ππ₯ . π₯= (1 + 2π£ β π£ (1β π£))/(1 βπ£)
ππ£/ππ₯ . π₯= (1 + 2π£ β π£ +γ π£γ^2)/(1 β π£)
ππ£/ππ₯ . π₯= (γ π£γ^2 + π£ + 1)/(1 β π£)
ππ£/ππ₯ π₯=β((γ π£γ^2 + π£ + 1)/(π£ β 1))
ππ£((π£β1)/(π£^(2 )+ π£ + 1))=(β ππ₯)/π₯
Integrating Both Sides
β«1βγ(π£ β1)/(π£^2 + π£ + 1) ππ£=β«1β(βππ₯)/π₯γ
β«1βγ(π£ β1)/(π£^2 + π£ + 1) ππ£=ββ«1βππ₯/π₯γ
β«1βγ((π£ β1) ππ£)/(π£^2 + π£ + 1) ππ£γ=βlogβ‘γ|π₯|γ + π
We can write
π£^2+π£+1 = π£^2 + 1/2 . 2v + (1/2)^2+1β(1/2)^2
=(π£+1/2)^2 + 1 β 1/4
=(π£+1/2)^2+3/4
Putting π£^2+π£+1=(π£+1/2)^2+3/4
& π£β1=π£+π/πβπ/πβ1 =(π£+1/2)β3/2
β«1β((π£ + 1/2) β 3/2)/((π£ + 1/2)^2+ 3/4) ππ£=βlogβ‘γπ₯+πγ
β«1β(π£ + 1/2)/((π£ + 1/2)^2+ 3/4) ππ£β3/2 β«1β1/((π£ + 1/2)^2+ 3/4) ππ£=βlogβ‘γπ₯+πγ
Thus, I = I1 β (3 )/2 I2
Solving πΌ1
πΌ1=β«1β((π£ + 1/2))/((π£ + 1/2)^2+ 3/4) ππ£
Put (π£+ 1/2)^2+ 3/4 =π‘
Diff. w.r.t. π£
π((π£ + 1/2)^2+ 3/4)/ππ£=ππ‘/ππ£
2(π£+1/2)=ππ‘/ππ£
ππ£=ππ‘/2(π£ + 1/2)
Putting value of v & dv in I1
πΌ1=β«1β((π£ + 1/2))/π‘ Γππ‘/2(π£ + 1/2)
=1/2 β«1βππ‘/π‘
=1/2 logβ‘ |π‘|
Putting π‘=(π£+ 1/2)^2+3/4
=1/2 πππ|(π£+ 1/2)^2+3/4|
=1/2 πππ|π£^2+2π£ Γ 1/2 + 1/4 + 3/4|
I1 =1/2 logβ‘γ |π£^2+π£+1|γ
Solving π°π
πΌ2=β«1βππ£/((π£ + 1/2)^2+3/4)
=β«1βππ£/((π£ + 1/2)^2+(β3/2)^2 )
Put π‘=π£+1/2
Diff. w.r.t. π£
ππ‘/ππ£=1 β ππ‘=ππ£
= β«1βππ‘/(π‘^2 + γ (β3/2)γ^2 )
=1/(β3/2) tan^(β1)β‘γπ‘/(β3/2)γ
=2/β3 tan^(β1)β‘γ2(π£ + 1/2)/β3γ
=2/β3 tan^(β1)β‘((2π£ + 1)/β3)
Hence
I = πΌ1β3/2 πΌ2
I =1/2 logβ‘ |π£^2+π£+1|β3/2 Γ2/β3 tan^(β1)β‘((2π£ +1)/β3)
I =1/2 logβ‘ |π£^2+π£+1|ββ3 tan^(β1)β‘((2π£ +1)/β3)
Replacing v by (π¦ )/π₯
I =1/2 πππ|(π¦/π₯)^2+π¦/π₯+1|ββ3 tan^(β1)β‘((2π¦/π₯ + 1)/β3)
I =1/2 πππ|π¦^2/π₯^2 +π¦/π₯+1|ββ3 tan^(β1)β‘((2π¦ + π₯)/(β3 π₯))
Putting Value of I in (2)
1/2 πππ|π¦^2/π₯^2 +π¦/π₯+1|ββ3 tan^(β1)β‘((2π¦ + π₯)/(β3 π₯))=βπππ|π₯|+π
1/2 πππ|π¦^2/π₯^2 +π¦/π₯+1|+πππ|π₯|=β3 tan^(β1)β‘((2π¦ + π₯)/(β3 π₯))+π
Multiplying Both Sides By 2
πππ|π¦^2/π₯^2 +π¦/π₯+1|+2 πππ|π₯|=2 β3 tan^(β1)β‘((2π¦ + π₯)/(β3 π₯))+2π
πππ|π¦^2/π₯^2 +π¦/π₯+1|+πππ|π₯|^2=2β3 tan^(β1)β‘((2π¦ + π₯)/(β3 π₯))+2π
Put 2π=π
πππ[|π¦^2/π₯^2 +π¦/π₯+1| Γ |π₯^2 |]=2β3 tan^(β1)β‘((2π¦ + π₯)/(β3 π₯))+π
πππ|γπ₯^2 π¦γ^2/π₯^2 +(π₯^2 π¦)/π₯+π₯^2 |=2β3 tan^(β1)β‘((π₯ + 2π¦)/(β3 π₯))+π
πππ|π^π+ππ+π^π |=πβπ γπππγ^(βπ)β‘((π + ππ)/(βπ π))+π
Is the General Solution of the Differential Equation given
Made by
Davneet Singh
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo
Hi, it looks like you're using AdBlock :(
Displaying ads are our only source of revenue. To help Teachoo create more content, and view the ad-free version of Teachooo... please purchase Teachoo Black subscription.
Please login to view more pages. It's free :)
Teachoo gives you a better experience when you're logged in. Please login :)
Solve all your doubts with Teachoo Black!
Teachoo answers all your questions if you are a Black user!