Find ∫ sec⁡ x /(1 + cosec x)  dx

This is a question of CBSE Sample Paper - Class 12 - 2017/18.

You can download the question paper here  https://www.teachoo.com/cbse/sample-papers/


Integrate sec x / (1 + cosec x) - Teachoo - CBSE Sample Paper Class 12

Question 18 - CBSE Class 12 Sample Paper for 2018 Boards - Part 2
Question 18 - CBSE Class 12 Sample Paper for 2018 Boards - Part 3
Question 18 - CBSE Class 12 Sample Paper for 2018 Boards - Part 4
Question 18 - CBSE Class 12 Sample Paper for 2018 Boards - Part 5 Question 18 - CBSE Class 12 Sample Paper for 2018 Boards - Part 6

Go Ad-free

Transcript

Question 18 Find ∫1β–’sec⁑π‘₯/(1 + π‘π‘œπ‘ π‘’π‘ π‘₯) dx ∫1β–’(𝑠𝑒𝑐 π‘₯)/(1 + π‘π‘œπ‘ π‘’π‘ π‘₯) 𝑑π‘₯ = ∫1β–’(1/π‘π‘œπ‘ β‘π‘₯ )/(1 + 1/𝑠𝑖𝑛⁑π‘₯ ) 𝑑π‘₯ = ∫1β–’(1/π‘π‘œπ‘ β‘π‘₯ )/((𝑠𝑖𝑛⁑π‘₯ + 1)/𝑠𝑖𝑛⁑π‘₯ ) 𝑑π‘₯ = ∫1β–’γ€–1/π‘π‘œπ‘ β‘π‘₯ Γ— sin⁑π‘₯/(𝑠𝑖𝑛⁑π‘₯ + 1)γ€— 𝑑π‘₯ = ∫1β–’(𝑠𝑖𝑛 π‘₯)/(π‘π‘œπ‘  π‘₯(1 + 𝑠𝑖𝑛 π‘₯)) 𝑑π‘₯ Multiplying and dividing by cos x = ∫1β–’(𝑠𝑖𝑛 π‘₯)/(π‘π‘œπ‘  π‘₯(1 + 𝑠𝑖𝑛 π‘₯)) Γ—cos⁑π‘₯/cos⁑π‘₯ 𝑑π‘₯ = ∫1β–’(𝑠𝑖𝑛 π‘₯ cos⁑π‘₯)/(cos^2⁑π‘₯ (1 + 𝑠𝑖𝑛 π‘₯)) 𝑑π‘₯ Using cos2 x = 1 – sin2 x = ∫1β–’(𝑠𝑖𝑛 π‘₯ cos⁑π‘₯)/((1 βˆ’ sin^2⁑π‘₯ )(1 + sin⁑〖π‘₯)γ€— ) 𝑑π‘₯ = ∫1β–’(𝑠𝑖𝑛 π‘₯ cos⁑π‘₯)/( (1 βˆ’ sin⁑〖π‘₯)γ€— (1 + sin⁑〖π‘₯)γ€— (1 + sin⁑〖π‘₯)γ€— ) 𝑑π‘₯ = ∫1β–’(𝑠𝑖𝑛 π‘₯ cos⁑π‘₯)/((1 + γ€–sin⁑〖π‘₯)γ€—γ€—^2 (1 βˆ’ sin⁑〖π‘₯)γ€— ) 𝑑π‘₯ Let sin x = t ∴ cos x dx = dt Putting values in equation = ∫1β–’(𝑑 )/((1 + 𝑑)^2 (1 βˆ’ 𝑑)) dt We solve this by partial fractions We can write the integrand as 𝑑/((1 + 𝑑)^2 (1 βˆ’ 𝑑)) = 𝐴/(1 + 𝑑) + 𝐡/(1 + 𝑑)^2 + 𝐢/(1 βˆ’ 𝑑) 𝑑/((1 + 𝑑)^2 (1 βˆ’ 𝑑)) = (𝐴(1 + 𝑑)(1 βˆ’ 𝑑) + 𝐡(1 βˆ’ 𝑑) + 𝐢(1 + 𝑑)^2)/((1 + 𝑑)^2 (1 βˆ’ 𝑑)) By cancelling denominator 𝑑 = 𝐴(1 + 𝑑)(1 βˆ’ 𝑑) + 𝐡(1 βˆ’ 𝑑) + 𝐢(1 + 𝑑)^2 Putting t = –1 in (1) –1 = 𝐴(1+(βˆ’1))(1 βˆ’(βˆ’1)) + 𝐡(1 βˆ’(βˆ’1)) + 𝐢(1 +(βˆ’1))^2 βˆ’1 = AΓ—0+BΓ—2+C(0)^2 βˆ’1 = 2B 2B = –1 B = (βˆ’1)/2 Putting t = 1 in (1) 1 = 𝐴(1+1)(1 βˆ’1) + 𝐡(1 βˆ’1) + 𝐢(1 +1)^2 1 = AΓ—0+BΓ—0+C(2)^2 1 = 4C 4C = 1 C = 1/4 Putting t = 0 in (1) 0 = 𝐴(1+0)(1 βˆ’0) + 𝐡(1 βˆ’0) + 𝐢(1 +0)^2 0 = 𝐴(1)(1) + 𝐡(1) + 𝐢(1)^2 0 = A+B+C 0 = A + ((βˆ’1)/2) + 1/4 1/2βˆ’1/4 = A 1/4 = A A = 1/4 Hence we can write ∫1β–’(𝑑 )/((1 + 𝑑)^2 (1 βˆ’ 𝑑)) dt = ∫1β–’(1/4)/((1 + 𝑑) ) dt + ∫1β–’((βˆ’1)/2)/(1 + 𝑑)^2 dt + ∫1β–’(1/4)/( (1 βˆ’ 𝑑)) dt

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo