Prove that cos⁡ θ - sin⁡θ + 1 /cos⁡ θ + sin⁡θ - 1 = cosec θ + cot θ
This is a question of CBSE Sample Paper - Class 10 - 2017/18.
You can download the question paper here https://www.teachoo.com/cbse/sample-papers/


CBSE Class 10 Sample Paper for 2018 Boards
CBSE Class 10 Sample Paper for 2018 Boards
Last updated at Dec. 16, 2024 by Teachoo
This is a question of CBSE Sample Paper - Class 10 - 2017/18.
You can download the question paper here https://www.teachoo.com/cbse/sample-papers/
Transcript
Question 27 Prove that cosβ‘γπ β sinβ‘π + 1γ/cosβ‘γπ + sinβ‘π β 1γ = cosec π + cot π Solving RHS cosec π + cot π Converting into cos and sin = 1/(sin π)+ cosβ‘π/sinβ‘π = (1 + cosβ‘π)/sinβ‘π Solving LHS cosβ‘γπ β sinβ‘π + 1γ/cosβ‘γπ + sinβ‘π β 1γ = cosβ‘γπ β sinβ‘π + 1γ/((cosβ‘γπ + sinβ‘π) β 1γ ) Question 27 Prove that cosβ‘γπ β sinβ‘π + 1γ/cosβ‘γπ + sinβ‘π β 1γ = cosec π + cot π Solving RHS cosec π + cot π Converting into cos and sin = 1/(sin π)+ cosβ‘π/sinβ‘π = (1 + cosβ‘π)/sinβ‘π Solving LHS cosβ‘γπ β sinβ‘π + 1γ/cosβ‘γπ + sinβ‘π β 1γ = cosβ‘γπ β sinβ‘π + 1γ/((cosβ‘γπ + sinβ‘π) β 1γ ) = γ(cosγβ‘γπ β sinβ‘π) + 1γ/((cosβ‘γπ + sinβ‘π) β 1γ ) Γ ((cosβ‘π+ sinβ‘π ) + 1)/((cosβ‘π+ sinβ‘π ) + 1) = (γ(cosγβ‘π + 1) β sinβ‘π)/((cosβ‘γπ + sinβ‘π) β 1γ ) Γ ((cosβ‘π + 1) + sinβ‘π)/((cosβ‘π+ sinβ‘π ) + 1) Using (a β b) (a + b) = a2 β b2 in numerator and denominator = (γγ(cosγβ‘π + 1)γ^2 β sin^2β‘π)/((cosβ‘π+ sinβ‘π )^2 β 1^2 ) = (cos^2β‘π + 1^2 + 2(1) cosβ‘π β sin^2β‘π)/(cos^2β‘π + sin^2β‘π + 2 cosβ‘π sinβ‘π β 1) = (cos^2β‘π +1 + 2 cosβ‘π β sin^2β‘π)/(cos^2β‘π + sin^2β‘π + 2 cosβ‘π sinβ‘π β 1) Using cos^2β‘π + sin^2β‘π = 1 in denominator = (cos^2β‘π +1 + 2 cosβ‘π β sin^2β‘π)/(1 + 2 cosβ‘π sinβ‘π β 1) = (cos^2β‘π + 1 + 2 cosβ‘π β sin^2β‘π)/(2 cosβ‘π sinβ‘π ) = (cos^2β‘π + 2 cosβ‘π + (1 β sin^2β‘π ))/(2 cosβ‘π sinβ‘π ) Using cos^2β‘π=1β sin^2β‘π in numerator = (cos^2β‘π + 2 cosβ‘π + cos^2β‘π)/(2 cosβ‘π sinβ‘π ) = (2 cos^2β‘π + 2 cosβ‘π )/(2 cosβ‘π sinβ‘π ) = (2 cosβ‘π (cosβ‘π + 1) )/(2 cosβ‘π sinβ‘π ) = (cosβ‘π + 1)/sinβ‘π = RHS β΄ LHS = RHS Hence proved