Evaluate: (cosec 2 ⁡ 63°  +  tan 2 ⁡ 24° ) / (cot 2 ⁡ 66°   +  sec 2 ⁡ 27°)  + (sin 2 ⁡ 63° + cos⁡ 63° sin⁡ 27° + sin⁡ 27° sec⁡ 63° )/(2(cosec 2 ⁡ 65° - tan 2 ⁡ 25°))

OR

If sin θ + cos θ = √2, then evaluate : tan θ + cot θ .

 

This is a question of CBSE Sample Paper - Class 10 - 2017/18.

You can download the question paper here  https://www.teachoo.com/cbse/sample-papers/

Evaluate: (cosec^2⁡ 63 + tan^2 24) | If sin + cos = root 2, find tan +

Question 19 - CBSE Class 10 Sample Paper for 2018 Boards - Part 2
Question 19 - CBSE Class 10 Sample Paper for 2018 Boards - Part 3
Question 19 - CBSE Class 10 Sample Paper for 2018 Boards - Part 4
Question 19 - CBSE Class 10 Sample Paper for 2018 Boards - Part 5

Question 19 - CBSE Class 10 Sample Paper for 2018 Boards - Part 6 Question 19 - CBSE Class 10 Sample Paper for 2018 Boards - Part 7 Question 19 - CBSE Class 10 Sample Paper for 2018 Boards - Part 8

Go Ad-free

Transcript

Question 19 Evaluate: (cosec^2⁡〖63°〗 + tan^2⁡〖24°〗)/(cot^2⁡〖66°〗 + sec^2⁡〖27°〗 ) + (sin^2⁡〖63°〗 + cos⁡〖63°〗 sin⁡〖27°〗 + sin⁡〖27°〗 sec⁡〖63°〗)/(2(cosec^2⁡〖65°〗 − tan^2⁡〖25°〗)) (cosec^2⁡〖63°〗 + tan^2⁡〖24°〗)/(cot^2⁡〖66°〗 + sec^2⁡〖27°〗 ) + (sin^2⁡〖63°〗 + cos⁡〖63°〗 sin⁡〖27°〗 + sin⁡〖27°〗 sec⁡〖63°〗)/(2(cosec^2⁡〖65°〗 − tan^2⁡〖25°〗)) Theory We know that we have to use sin (90 – θ) = cos θ sin becomes cos cos becomes sin tan becomes cot cot becomes tan cosec becomes sec sec becomes cosec So, we need to form pairs Theory This will become sin2 63° + cos2 63° And we can use sin2 x + cos2 x = 1 This will become sin 27° × cosec 27° And we put cosec x = 1/sin⁡𝑥 (〖𝒄𝒐𝒔𝒆𝒄〗^𝟐⁡〖𝟔𝟑°〗 + 〖𝒕𝒂𝒏〗^𝟐⁡〖𝟐𝟒°〗)/(〖𝒄𝒐𝒕〗^𝟐⁡〖𝟔𝟔°〗 + 〖𝒔𝒆𝒄〗^𝟐⁡〖𝟐𝟕°〗 ) + (〖𝒔𝒊𝒏〗^𝟐⁡〖𝟔𝟑°〗 + 𝒄𝒐𝒔⁡〖𝟔𝟑°〗 𝐬𝐢𝐧⁡〖𝟐𝟕°〗 + 𝒔𝒊𝒏⁡〖𝟐𝟕°〗 𝒔𝒆𝒄⁡〖𝟔𝟑°〗)/(𝟐(〖𝒄𝒐𝒔𝒆𝒄〗^𝟐⁡〖𝟔𝟓°〗 − 〖𝒕𝒂𝒏〗^𝟐⁡〖𝟐𝟓°〗)) Denominator will become tan^2⁡〖24°〗+cosec^2⁡〖63°〗 and get cancelled by numerator Denominator will become cosec^2⁡〖65°〗 − cot^2⁡〖65°〗 And we can use cosec2 x – cot2 x = 1 (cosec^2⁡〖63°〗 + tan^2⁡〖24°〗)/(cot^2⁡〖66°〗 + sec^2⁡〖27°〗 ) + (sin^2⁡〖63°〗 + cos⁡〖63°〗 sin⁡〖27°〗 + sin⁡〖27°〗 sec⁡〖63°〗)/(2(cosec^2⁡〖65°〗 − tan^2⁡〖25°〗)) Using cos θ = sin (90 – θ) sin θ = cos (90 – θ) tan θ = cot (90 – θ) cot θ = tan (90 – θ) sec θ = cosec (90 – θ) cosec θ = sec (90 – θ) = (cosec^2⁡〖63°〗 + tan^2⁡〖24°〗)/(tan^2⁡〖(90° − 66°)〗 + cosec^2⁡〖(90° − 27°〗)) + (sin^2⁡〖63°〗 + cos⁡〖63°〗 〖cos 〗⁡〖(90° −27°)〗+ sin⁡〖27°〗 cosec⁡〖 (90° − 63°)〗)/2(cosec^2⁡〖65°〗 −〖 cot〗^2⁡〖(90° − 25°〗)) = (cosec^2⁡〖63°〗 + tan^2⁡〖24°〗)/(tan^2⁡〖(24°)〗 + cosec^2⁡〖(63°〗)) + (sin^2⁡〖63°〗 + cos⁡〖63°〗 cos⁡〖 (63°)〗+ sin⁡〖27°〗 cosec⁡〖(27°)〗)/2(cosec^2⁡〖65°〗 −〖 cot〗^2⁡〖(65°〗)) = 1 + (sin^2⁡〖63°〗 + cos^2⁡〖63°〗+ sin⁡〖27°〗 cosec⁡〖27°〗)/2(cosec^2⁡〖65°〗 −〖 cot〗^2⁡〖65°〗 ) Using cosec2 x – cot2 x = 1 = 1 + (〖𝒔𝒊𝒏〗^𝟐⁡〖𝟔𝟑°〗 + 〖𝒄𝒐𝒔〗^𝟐⁡〖𝟔𝟑°〗+ sin⁡〖27°〗 cosec⁡〖27°〗)/2(1) Using sin2 x + cos2 x = 1 = 1 + (1 + 𝑠𝑖𝑛⁡〖27°〗 𝑐𝑜𝑠𝑒𝑐⁡〖27°〗)/2 Using cosec x = 1/sin⁡𝑥 = 1 + (1 + 𝑠𝑖𝑛⁡〖27°〗 × 1/sin⁡〖27°〗 )/2 = 1 + (1 +1)/2 = 1 + 2/2 = 1 + 1 = 2 Question 19 If sin 𝜃 + cos 𝜃 = √2, then evaluate : tan 𝜃 + cot 𝜃. Given sin θ + cos θ = √2 We need to find tan θ + cot θ Now, tan θ + cot θ = sin⁡𝜃/cos⁡𝜃 +cos⁡𝜃/sin⁡𝜃 = (sin⁡𝜃 × sin⁡𝜃 + cos⁡𝜃 × cos⁡𝜃)/(cos⁡𝜃 × sin⁡𝜃 ) = (sin^2⁡𝜃 + cos^2⁡𝜃)/(cos⁡𝜃 sin⁡𝜃 ) Putting sin2 x + cos2 x = 1 = 1/(cos⁡𝜃 sin⁡𝜃 ) Thus, tan θ + cot θ = 1/(cos⁡𝜃 sin⁡𝜃 ) Now sin θ + cos θ = √2 Squaring both sides (sin θ + cos θ)2 = (√2)^2 sin2 θ + cos2 θ + 2 sin θ cos θ = 2 Putting sin2 x + cos2 x = 1 1 + 2 sin θ cos θ = 2 2 sin θ cos θ = 2 – 1 2 sin θ cos θ = 1 sin θ cos θ = 1/2 From (1) tan θ + cot θ = 1/(cos⁡𝜃 sin⁡𝜃 ) Putting value from (2) tan θ + cot θ = 1/((1/2) ) tan θ + cot θ = 2

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo