Question 3 (Supplementary NCERT) - Examples - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Examples
Example 1 (ii)
Example 1 (iii)
Example 2 (i)
Example 2 (ii)
Example 2 (iii) Important
Example 3 (i)
Example 3 (ii) Important
Example 3 (iii)
Example 4
Example 5 (i)
Example 5 (ii)
Example 5 (iii) Important
Example 5 (iv) Important
Example 6 (i)
Example 6 (ii) Important
Example 6 (iii) Important
Example 7 (i)
Example 7 (ii) Important
Example 7 (iii)
Example 8 (i)
Example 8 (ii) Important
Example 9 (i)
Example 9 (ii) Important
Example 9 (iii) Important
Example 10 (i)
Example 10 (ii) Important
Example 11
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important
Example 21 Important
Example 22 Important
Example 23
Example 24
Example 25 (i)
Example 25 (ii) Important
Example 25 (iii)
Example 25 (iv) Important
Example 26
Example 27
Example 28 Important
Example 29
Example 30
Example 31
Example 32 Important
Example 33 Important
Example 34 Important
Example 35
Example 36 Important
Example 37 Important
Example 38 Important
Example 39 Important
Example 40 Important
Example 41 Important
Example 42 Important
Question 1 Important
Question 2
Question 3 (Supplementary NCERT) Important You are here
Last updated at Dec. 16, 2024 by Teachoo
Question 3 (Supplementary NCERT) โซ1โ๐ฅ โ(1+๐ฅโ๐ฅ^2 ) ๐๐ฅ โซ1โ๐ฅ โ(1+๐ฅโ๐ฅ^2 ) ๐๐ฅ We can write it as:- x = A [๐/๐๐ฅ (1+๐ฅโ๐ฅ^2 )]+ B x = A [0+1โ2๐ฅ]+ B x = A [1โ2๐ฅ]+ B x = "A"โ2"A" ๐ฅ+ B x = โ2"A" ๐ฅ+(๐ด+๐ต) Comparing x and constant term Thus, we can write x = A [1โ2๐ฅ] + B x = ((โ1)/2)[1โ2๐ฅ] + 1 x = (โ2A) x ๐ฅ/๐ฅ = โ2A 1 = โ2A A = (โ1)/2 0 = A + B B = โA B = โ((โ1)/2) B = 1/2 Integrating โซ1โใ๐ฅโ(1+๐ฅโ๐ฅ^2 ) ใ ๐๐ฅ = โซ1โใ[(โ1/2)[1โ2๐ฅ]+1/2] ใ โ(1+๐ฅโ๐ฅ^2 ) ๐๐ฅ = โซ1โใ[(โ1/2)[1 โ2๐ฅ] โ(1+๐ฅโ๐ฅ^2 )+1/2 โ(1+๐ฅโ๐ฅ^2 )] ใ ๐๐ฅ = โซ1โใ(โ1/2)[1โ2๐ฅ] โ(1+๐ฅโ๐ฅ^2 ) ๐๐ฅ+ใ โซ1โใ1/2 โ(1โ๐ฅโ๐ฅ^2 )ใ ๐๐ฅ = โ1/2 โซ1โใ[1โ2๐ฅ] โ(1+๐ฅโ๐ฅ^2 ) ๐๐ฅ+ใ 1/2 โซ1โโ(1+๐ฅโ๐ฅ^2 ) ๐๐ฅ Solving ๐ฐ_๐ I_1 = (โ1)/2 โซ1โใ[1โ2๐ฅ] โ(1+๐ฅโ๐ฅ^2 )ใ ๐๐ฅ Let 1 + ๐ฅ โ ๐ฅ^2 = t Diff. both sides w.r.t.x 0 + 1 โ2x = ๐๐ก/๐๐ฅ (1 โ 2x) dx = dt dx = ๐๐ก/(1 โ 2๐ฅ) Thus, our equation becomes I_1 = (โ1)/2 โซ1โใ[1โ2๐ฅ] โ(1+๐ฅโ๐ฅ^2 )ใ ๐๐ฅ Putting the value if (1+๐ฅโ๐ฅ^2) and dx, we get I_1 = (โ1)/2 โซ1โใ[1โ2๐ฅ] โ๐กใ. ๐๐ฅ I_1 = (โ1)/2 โซ1โใ[1โ2๐ฅ] โ๐กใ. ๐๐ก/[1 โ 2๐ฅ] ๐ผ_1 = (โ1)/2 โซ1โโ๐ก. ๐๐ก I_1 = (โ1)/2 โซ1โใ(๐ก)ใ^(1/2) ๐๐ก I_1 = (โ1)/2 ใ๐ก ใ^(1/2 + 1)/((1/2 + 1) )+ C_1 I_1 = (โ1)/2 ใ๐ก ใ^(3/2 )/((3/2) )+ C_1 I_1 = (โ1)/3 ใ๐ก ใ^(3/2 )+ C_1 I_1 = (โ1)/3 ใ(1โ๐ฅ โ๐ฅ^2 ) ใ^(3/2 )+ C_1 ("Using t = " 1โ๐ฅ โ๐ฅ^2 ) Solving ๐ฐ_๐ I_2 = 1/2 โซ1โโ(1+๐ฅโ๐ฅ^2 ) ๐๐ฅ I_2 = 1/2 โซ1โโ(โ(๐ฅ^2โ๐ฅโ1)) ๐๐ฅ I_2 = 1/2 โซ1โโ(โ[๐ฅ^2โ2(๐ฅ)(1/2)โ1] ) ๐๐ฅ I_2 = 1/2 โซ1โใโ(โ[๐ฅ^2โ2(๐ฅ)(1/2)+(1/2)^2โ(1/2)^2โ1] ) ใ ๐๐ฅ I_2 = 1/2 โซ1โใโ(โ[(๐ฅโ1/2)^2โ(1/2)^2โ1] ) ใ ๐๐ฅ I_2 = 1/2 โซ1โใโ(โ[ใ (๐ฅโ1/2)ใ^2+(โ1 โ4)/4] ) ใ ๐๐ฅ I_2 = 1/2 โซ1โใโ(โ[ใ (๐ฅโ1/2)ใ^2 โ5/4] ) ใ ๐๐ฅ I_2 = 1/2 โซ1โใโ(5/4 ใ โ(๐ฅโ1/2)ใ^2 ) ใ ๐๐ฅ I_2 = 1/2 โซ1โใโ((โ5/4)^2 ใ โ(๐ฅโ1/2)ใ^2 ) ใ ๐๐ฅ I_2 = 1/2 ((๐ฅ โ 1/2)/2 โ((โ5/4)^2 ใ โ(๐ฅโ1/2)ใ^2 )+(โ5/2)^2/2 ใ๐ ๐๐ใ^(โ1) ((๐ฅ + 1/2)/(โ5/2))+ C_2 ) I_2 = 1/2 (((2๐ฅ โ1)/2)/2 โ(5/4โ[๐ฅ^2 +1/4โ2๐ฅ(1/2)] ) +(5/4)/2 ใ๐ ๐๐ใ^(โ1) (((2๐ฅ โ 1)/2)/(โ5/2))+ C_2 ) It is of form โ(๐^2โ๐ฅ^2 ) ๐๐ฅ=1/2 ๐ฅโ(๐^2โ๐ฅ^2 )+๐^2/2 ใ๐ ๐๐ใ^(โ1) ๐ฅ/๐+ C_2 Replacing x by (x โ 1/2) and a by โ5/2 , we get I_2 = 1/2 ((2๐ฅ โ1)/4 โ(5/4โ[๐ฅ^2 +1/4 โ๐ฅ] ) +5/8 ใ๐ ๐๐ใ^(โ1) ((2๐ฅ โ 1)/โ5)+ C_2 ) I_2 " = " (2๐ฅ โ1)/8 โ(1+๐ฅ+๐ฅ^2 ) +5/16 ใ๐ ๐๐ใ^(โ1) ((2๐ฅ โ 1)/โ5)+C_3 Putting the value of I_1 and I_2 in (1) โซ1โ๐ฅ โ(1+ ๐ฅโ๐ฅ^2 ) d๐ฅ = (โ1)/2 โซ1โใ[1โ2๐ฅ] โ(1+๐ฅโ๐ฅ^2 )ใ ๐๐ฅ+โซ1โโ(1+๐ฅโ๐ฅ^2 ) ๐๐ฅ = (โ1)/3 ใ(1+๐ฅโ๐ฅ^2)ใ^(3/2) + C_1 + ((2๐ฅ โ1))/8 โ(1+๐ฅโ๐ฅ^2 )+5/16 ใ๐ ๐๐ใ^(โ1) ((2๐ฅ โ 1)/โ5)+ C_3 = (โ๐)/๐ ใ(๐+๐โ๐^๐)ใ^(๐/๐) +๐/๐ (๐๐ โ๐) โ(๐+๐โ๐^๐ )+ ๐/๐๐ ใ๐๐๐ใ^(โ๐) ((๐๐ โ ๐)/โ๐)+ ๐ช