







Examples
Last updated at Dec. 16, 2024 by Teachoo
Question 3 (Supplementary NCERT) โซ1โ๐ฅ โ(1+๐ฅโ๐ฅ^2 ) ๐๐ฅ โซ1โ๐ฅ โ(1+๐ฅโ๐ฅ^2 ) ๐๐ฅ We can write it as:- x = A [๐/๐๐ฅ (1+๐ฅโ๐ฅ^2 )]+ B x = A [0+1โ2๐ฅ]+ B x = A [1โ2๐ฅ]+ B x = "A"โ2"A" ๐ฅ+ B x = โ2"A" ๐ฅ+(๐ด+๐ต) Comparing x and constant term Thus, we can write x = A [1โ2๐ฅ] + B x = ((โ1)/2)[1โ2๐ฅ] + 1 x = (โ2A) x ๐ฅ/๐ฅ = โ2A 1 = โ2A A = (โ1)/2 0 = A + B B = โA B = โ((โ1)/2) B = 1/2 Integrating โซ1โใ๐ฅโ(1+๐ฅโ๐ฅ^2 ) ใ ๐๐ฅ = โซ1โใ[(โ1/2)[1โ2๐ฅ]+1/2] ใ โ(1+๐ฅโ๐ฅ^2 ) ๐๐ฅ = โซ1โใ[(โ1/2)[1 โ2๐ฅ] โ(1+๐ฅโ๐ฅ^2 )+1/2 โ(1+๐ฅโ๐ฅ^2 )] ใ ๐๐ฅ = โซ1โใ(โ1/2)[1โ2๐ฅ] โ(1+๐ฅโ๐ฅ^2 ) ๐๐ฅ+ใ โซ1โใ1/2 โ(1โ๐ฅโ๐ฅ^2 )ใ ๐๐ฅ = โ1/2 โซ1โใ[1โ2๐ฅ] โ(1+๐ฅโ๐ฅ^2 ) ๐๐ฅ+ใ 1/2 โซ1โโ(1+๐ฅโ๐ฅ^2 ) ๐๐ฅ Solving ๐ฐ_๐ I_1 = (โ1)/2 โซ1โใ[1โ2๐ฅ] โ(1+๐ฅโ๐ฅ^2 )ใ ๐๐ฅ Let 1 + ๐ฅ โ ๐ฅ^2 = t Diff. both sides w.r.t.x 0 + 1 โ2x = ๐๐ก/๐๐ฅ (1 โ 2x) dx = dt dx = ๐๐ก/(1 โ 2๐ฅ) Thus, our equation becomes I_1 = (โ1)/2 โซ1โใ[1โ2๐ฅ] โ(1+๐ฅโ๐ฅ^2 )ใ ๐๐ฅ Putting the value if (1+๐ฅโ๐ฅ^2) and dx, we get I_1 = (โ1)/2 โซ1โใ[1โ2๐ฅ] โ๐กใ. ๐๐ฅ I_1 = (โ1)/2 โซ1โใ[1โ2๐ฅ] โ๐กใ. ๐๐ก/[1 โ 2๐ฅ] ๐ผ_1 = (โ1)/2 โซ1โโ๐ก. ๐๐ก I_1 = (โ1)/2 โซ1โใ(๐ก)ใ^(1/2) ๐๐ก I_1 = (โ1)/2 ใ๐ก ใ^(1/2 + 1)/((1/2 + 1) )+ C_1 I_1 = (โ1)/2 ใ๐ก ใ^(3/2 )/((3/2) )+ C_1 I_1 = (โ1)/3 ใ๐ก ใ^(3/2 )+ C_1 I_1 = (โ1)/3 ใ(1โ๐ฅ โ๐ฅ^2 ) ใ^(3/2 )+ C_1 ("Using t = " 1โ๐ฅ โ๐ฅ^2 ) Solving ๐ฐ_๐ I_2 = 1/2 โซ1โโ(1+๐ฅโ๐ฅ^2 ) ๐๐ฅ I_2 = 1/2 โซ1โโ(โ(๐ฅ^2โ๐ฅโ1)) ๐๐ฅ I_2 = 1/2 โซ1โโ(โ[๐ฅ^2โ2(๐ฅ)(1/2)โ1] ) ๐๐ฅ I_2 = 1/2 โซ1โใโ(โ[๐ฅ^2โ2(๐ฅ)(1/2)+(1/2)^2โ(1/2)^2โ1] ) ใ ๐๐ฅ I_2 = 1/2 โซ1โใโ(โ[(๐ฅโ1/2)^2โ(1/2)^2โ1] ) ใ ๐๐ฅ I_2 = 1/2 โซ1โใโ(โ[ใ (๐ฅโ1/2)ใ^2+(โ1 โ4)/4] ) ใ ๐๐ฅ I_2 = 1/2 โซ1โใโ(โ[ใ (๐ฅโ1/2)ใ^2 โ5/4] ) ใ ๐๐ฅ I_2 = 1/2 โซ1โใโ(5/4 ใ โ(๐ฅโ1/2)ใ^2 ) ใ ๐๐ฅ I_2 = 1/2 โซ1โใโ((โ5/4)^2 ใ โ(๐ฅโ1/2)ใ^2 ) ใ ๐๐ฅ I_2 = 1/2 ((๐ฅ โ 1/2)/2 โ((โ5/4)^2 ใ โ(๐ฅโ1/2)ใ^2 )+(โ5/2)^2/2 ใ๐ ๐๐ใ^(โ1) ((๐ฅ + 1/2)/(โ5/2))+ C_2 ) I_2 = 1/2 (((2๐ฅ โ1)/2)/2 โ(5/4โ[๐ฅ^2 +1/4โ2๐ฅ(1/2)] ) +(5/4)/2 ใ๐ ๐๐ใ^(โ1) (((2๐ฅ โ 1)/2)/(โ5/2))+ C_2 ) It is of form โ(๐^2โ๐ฅ^2 ) ๐๐ฅ=1/2 ๐ฅโ(๐^2โ๐ฅ^2 )+๐^2/2 ใ๐ ๐๐ใ^(โ1) ๐ฅ/๐+ C_2 Replacing x by (x โ 1/2) and a by โ5/2 , we get I_2 = 1/2 ((2๐ฅ โ1)/4 โ(5/4โ[๐ฅ^2 +1/4 โ๐ฅ] ) +5/8 ใ๐ ๐๐ใ^(โ1) ((2๐ฅ โ 1)/โ5)+ C_2 ) I_2 " = " (2๐ฅ โ1)/8 โ(1+๐ฅ+๐ฅ^2 ) +5/16 ใ๐ ๐๐ใ^(โ1) ((2๐ฅ โ 1)/โ5)+C_3 Putting the value of I_1 and I_2 in (1) โซ1โ๐ฅ โ(1+ ๐ฅโ๐ฅ^2 ) d๐ฅ = (โ1)/2 โซ1โใ[1โ2๐ฅ] โ(1+๐ฅโ๐ฅ^2 )ใ ๐๐ฅ+โซ1โโ(1+๐ฅโ๐ฅ^2 ) ๐๐ฅ = (โ1)/3 ใ(1+๐ฅโ๐ฅ^2)ใ^(3/2) + C_1 + ((2๐ฅ โ1))/8 โ(1+๐ฅโ๐ฅ^2 )+5/16 ใ๐ ๐๐ใ^(โ1) ((2๐ฅ โ 1)/โ5)+ C_3 = (โ๐)/๐ ใ(๐+๐โ๐^๐)ใ^(๐/๐) +๐/๐ (๐๐ โ๐) โ(๐+๐โ๐^๐ )+ ๐/๐๐ ใ๐๐๐ใ^(โ๐) ((๐๐ โ ๐)/โ๐)+ ๐ช