Union of sets A & B has all the elements of set A and set B

It is represented by symbol ∪

 

Let A = {1, 2, 3, 4} , B = {3, 4, 5, 6}

A ∪ B = {1, 2, 3, 4, 5, 6}

Union of sets - Venn diagram.jpg

The blue region is A ∪ B


Properties of Union

  1. A ∪ B = B ∪ A (Commutative law)
  2. (A ∪ B) ∪ C = A ∪ (B ∪ C) (Associative law )
  3. A ∪ ∅ = A (Law of identity element, ∅ is the identity of ∪)
  4. A ∪ A = A (Idempotent law)
  5. U ∪ A = U (Law of U)

 

Let us discuss these laws

 

Let us take sets

Let A = {1, 2, 3, 4} , B = {3, 4, 5, 6}, C = {6, 7, 8}

and Universal set = U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

 

A ∪ B = B ∪ A (Commutative law )

A ∪ B = {1, 2, 3, 4, 5, 6}

B ∪ A = {1, 2, 3, 4, 5, 6}

A ∪ B = B ∪ A

 

(A ∪ B) ∪ C = A ∪ (B ∪ C) ( Associative law )

A ∪ B = {1, 2, 3, 4, 5, 6}

(A ∪ B) ∪ C = {1, 2, 3, 4, 5, 6} ∪ {6, 7, 8} = {1, 2, 3, 4, 5, 6, 7, 8}

B ∪ C = {3, 4, 5, 6} ∪ {6, 7, 8}

B ∪ C = {3, 4, 5, 6, 7, 8}

A ∪ (B ∪ C) = {1, 2, 3, 4} ∪ {3, 4, 5, 6, 7, 8} = {1, 2, 3, 4, 5, 6, 7, 8}

∴ (A ∪ B) ∪ C = A ∪ (B ∪ C)

 

A = A (Law of identity element, is the identity of ∪ )

In union, all the elements of set A and empty set (∅) will be there.

Since ∅ has no element, the union will have all the elements of set A only.

That is, union will be A

A U ∅ = {1, 2, 3, 4} ∪ {}

A U ∅ = {1, 2, 3, 4} = A

∴ A ∪ ∅ = A

 

A ∪ A = A (Idempotent law )

A U A = {1, 2, 3, 4} ∪ {1, 2, 3, 4}

A U A = {1, 2, 3, 4} = A

 

U ∪ A = U (Law of U)

Union will have all the elements of Universal set and A

Since Universal set has all the elements, union will be the universal set

U ∪ A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ∪ {1, 2, 3, 4}

U ∪ A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}  = U

∴ U ∪ A = U

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo