Value of sin 18 °
Value of cos 18° and sin 72°
Value of cos 36°, sin 36° and sin 54°
Finding Value of trignometric functions, given angle
Value of sin, cos, tan repeats after 2π
Shifting angle by π/2, π, 3π/2 , 2π
Example 8
Ex 3.2, 9 Important
Ex 3.2, 8
Ex 3.2, 10 Important
Example 9 Important
Ex 3.2, 6
Ex 3.2, 7 Important
Example 10
Ex 3.3, 1 Important
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Find values of sin 18, cos 18, cos 36, sin 36, sin 54, cos 54 Important You are here
Finding Value of trignometric functions, given angle
Last updated at April 16, 2024 by Teachoo
What is value of sin 18 Let θ = 18° 5θ = 5 × 18° = 90° 2θ + 3θ = 90° 2θ = 90° – 3θ sin 2θ = sin (90° – 3θ) sin 2θ = cos 3θ 2 sin θ cos θ = 4 cos3 θ – 3 cos θ 2 sin θ cos θ – 4 cos3 θ + 3 cos θ = 0 cos θ (2 sin θ – 4 cos2 θ + 3) = 0 2 sin θ – 4 cos2 θ + 3 = 0 2 sin θ – 4 (1 – sin2 θ) + 3 = 0 2 sin θ – 4 + 4sin2 θ + 3 = 0 4sin2 θ + 2 sin θ – 1 = 0 Let sin θ = x 4x2 + 2x – 1 = 0 x = (−𝑏±√(𝑏^2 − 4𝑎𝑐))/2𝑎 x = (−2 ± √(2^2 − 4(4)(−1) ))/(2(4)) = (−2 ± √(4 + 16 ))/8 = (−2 ± √20)/8 = (−2 ± √(4 × 5))/8 x = (−2 ±2√5)/8 = (−1 ± √5)/4 ∴ sin θ = sin 18° = (−𝟏 ± √𝟓)/𝟒 Since sin is positive sin 18° = (−𝟏 + √𝟓)/𝟒 cos 18 We know that , 〖𝑠𝑖𝑛〗^2 18°+cos^2〖18°〗=1 ∴ cos^2〖18°〗=1−〖𝑠𝑖𝑛〗^2 18° 𝑐𝑜𝑠〖18°〗=√(1−〖𝑠𝑖𝑛〗^2 18°" " ) 𝑐𝑜𝑠〖18°〗=√(1−((−𝟏 + √𝟓)/𝟒)^2 )=√(1−((𝟏 + 𝟓 − 𝟐√𝟓)/𝟏𝟔) )=√((16 − 6 + 2 √5)/16) 𝒄𝒐𝒔〖𝟏𝟖°〗=√((𝟏𝟎 + 𝟐 √𝟓)/𝟒) 𝒔𝒊𝒏 𝟕𝟐°=sin〖(90−18°)〗= 𝑐𝑜𝑠〖18°〗=√((10 + 2 √5)/4) cos 36 and sin 36 𝑐𝑜𝑠〖36°〗=1−2 sin^2〖18°〗 ∴ 𝑐𝑜𝑠〖36°〗=1−2((√5 − 1)/4)^2=1((5 + 1 2√6)/8)=1−((6−2√5)/8) =(8 − 6 + 2√5)/8=(2 + 2√5)/8=(√5 + 1)/4 〖𝑠𝑖𝑛^2〗〖36°〗+cos^2〖36°〗=1 〖𝑠𝑖𝑛^2〗〖36°〗=1 −cos^2〖36°〗 ∴ 〖𝑠𝑖𝑛^2〗〖36°〗=1 −((√5 + 1)/4)^2=1−((5 + 1 + 2√5)/16)=(16 − 6 − 2√5)/16 〖𝑠𝑖𝑛^2〗〖36°〗 = (10 − 2√5)/16 𝑠𝑖𝑛〖36°〗=√(10 − 2√5) /4 sin 54° sin 54°=sin(90°−36°)=cos36°=(√5 + 1)/4