Check the formula sheet of integration.
Topics include
- Basic Integration Formulas
- Integral of special functions
- Integral by Partial Fractions
- Integration by Parts
- Other Special Integrals
- Area as a sum
- Properties of definite integration
Integration of Trigonometric Functions, Properties of Definite Integration are all mentioned here.
Basic Formula
- ∫x n = x n+1 /n+1 + C
- ∫cos x = sin x + C
- ∫sin x = -cos x + C
- ∫sec 2 x = tan x + C
- ∫cosec 2 x = -cot x + C
- ∫sec x tan x = sec x + C
- ∫cosec x cot x = -cosec x + C
- ∫dx/√ 1- x 2 = sin -1 x + C
- ∫dx/√ 1- x 2 = -cos -1 x + C
- ∫dx/√ 1+ x 2 = tan -1 x + C
- ∫dx/√ 1+ x 2 = -cot -1 x + C
- ∫e x = e x + C
- ∫a x = a x / log a + C
- ∫dx/x √ x 2 - 1= sec -1 x + C
- ∫dx/x √ x 2 - 1= cosec -1 x + C
- ∫1/x = log |x| + c
- ∫tan x = log |sec x| + c
- ∫cot x = log |sin x| + c
- ∫sec x = log |sec x + tan x| + c
- ∫cosec x = log |cosec x - cot x| + c
Practice Basic Formula questions - Part 1 and Basic Formula questions - Part 2.
Integrals of some special function s
- ∫dx/(x 2 - a 2 ) = 1/2a log⁡ |(x - a) / (x + a)| + c
- ∫dx/(a 2 - x 2 ) = 1/2a log⁡ |(a + x) / (a - x)| + c
- ∫dx / (x 2 + a 2 ) = 1/a tan (-1) ⁡ x / a + c
-
∫dx / √(x 2 - a 2 ) = log |"x" + √(x 2 -a 2 )| + C
-
1.∫dx / √(a 2 - x 2 ) = sin-1 x / a + c
- ∫dx / √(x 2 + a 2 ) = log |"x" + √(x 2 + a 2 )| + C
Check Practice Questions
Integrals by partial fractions
-
(px + q) / ((x - a) (x - b)) = A/(x - a) + B / (x - b)
-
(px + q) / (x - a) 2 = A/(x - a) + B / (x - a) 2
- (px 2 + qx + r) / (x - a) (x - b) (x - c) = A / (x - a) + B / (x - b) + C / (x - c)
- (px 2 + qx + r) / ((x - a) 2 (x - b) ) = A / (x - a) + B / (x - a) 2 + C / (x - b)
-
(px
2
+ qx + r) / (x - a) (x
2
+ bx + c) = A / (x - a) + (Bx + C) / (x
2
+ bx + c)
Where x 2 + bx + c can not be factorised further.
Check Practice Questions
Integration by parts
-
∫𝒇(𝒙) 𝒈⁡(𝒙) 𝒅𝒙 = 𝒇(𝒙) ∫𝒈 (𝒙) 𝒅𝒙− ∫(𝒇 ' (𝒙) ∫𝒈(𝒙) 𝒅𝒙) 𝒅𝒙
To decide first function. We use
I → Inverse (Example sin (-1) ⁡x)
L → Log (Example log ⁡x)
A → Algebra (Example x 2 , x 3 )
T → Trigonometry (Example sin 2 x)
E → Exponential (Example e x )
-
∫ex [f (x) + f ′(x)] dx = ∫ex f(x) dx + C
Check Practice Questions
Other Special Integrals
- ∫√ (x 2 - a 2 ) dx = x / 2 √(x 2 - a 2 ) − a 2 / 2 log |x + √(x 2 - a 2 )| + C
-
∫ √( x 2 + a 2 ) dx = x / 2 √(x 2 + a 2 ) + a 2 / 2 log |x +√(x 2 + a 2 )| + C
-
∫ √( a 2 - x 2 ) dx = x / 2 √(a 2 - x 2 ) + a 2 / 2 sin 1 x / a + C
Check Practice Questions
Integral of the form ∫ (px+q) √( ax 2 + bx + c ) dx
We solve this using a specific method.
-
First we write
px + q = A (d(√(ax 2 + bx + c))/dx) + B - Then we find A and B
- Our equation becomes two seperate identities and then we solve.
Some examples are
- (x + 3) √( 3 - 4x - x 2 ) - View solution
- x √(1 + x - x 2 ) dx – View Solution
Check Practice Questions
Area as a sum
∫a→b f (x) dx = (b - a) (lim) (n→∞) 1 / n (f (a) + f (a + h) + f (a + 2h)…+ f (a + (n - 1) h))
Check Practice Questions
Properties of definite integration
- P 0 : ∫a→b f(x) dx = ∫a→b f(t) dt
- P 1 : ∫a→b f(x) dx = -∫b→a f(x) dx .In particular, ∫a→a f(x) dx = 0
- P 2 : ∫a→b f(x) dx = ∫a→c f(x) dx + ∫c→b f(x) dx
- P 3 : ∫a→b f(x) dx= ∫a→b f(a + b - x) dx.
- P 4 : ∫0→a f(x)dx = ∫0→a f(a - x) dx
- P 5 : ∫0→2a f(x) dx = ∫0→a f(x) dx + ∫0→a f(2a - x) dx
- P 6 : ∫0→2a f(x) = {(2∫0→a f(x) dx, if f (2a - x) = f (x) , if f (2a - x) = -f(x))
- P 7 : ∫(-a)→a f(x) = {(2∫0→a f(x) dx, if f(-x) = f(x), if f ( -x) = -f(x)
Check
Practice Questions
You can also download the pdf here