Example 10 (ii) - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Integration by specific formulaes - Method 10
Integration by specific formulaes - Method 10
Last updated at April 16, 2024 by Teachoo
Example 10 Find the following integrals: (ii) 𝑥 + 3 5 − 4𝑥 − 𝑥2 𝑑𝑥 It can be written in the form 𝑥+3= A 𝑑𝑑𝑥 − 𝑥2−4𝑥+5+ B 𝑥+3= A −2𝑥−4+ B 𝑥+3= 2A 𝑥−4A+B Finding A & B Now, we know that 𝑥+3=A −2𝑥−4+B 𝑥+3= −1 2 −2𝑥−4+1 Step 2 : Integrating 𝑥+3 5 − 4𝑥 + 𝑥2.𝑑𝑥= 12 −2𝑥 − 4+1 5 − 4𝑥 − 𝑥2.𝑑𝑥 = −1 2 −2𝑥 − 4+1 5 − 4𝑥 + 𝑥2𝑑𝑥+ 1 5 − 4𝑥 − 𝑥2𝑑𝑥 = −1 2 −2𝑥 − 4 5 − 4𝑥 + 𝑥2.𝑑𝑥+ 1 5 − 4𝑥 − 𝑥2.𝑑𝑥 Taking I1 I1 = −1 2 −2𝑥 − 4 − 𝑥2 − 4𝑥 + 5.𝑑𝑥 Let t = − 𝑥2 − 4𝑥 + 5 Differentiating both sides w.r.t. 𝑥 −2𝑥 − 4 = 𝑑𝑡𝑑𝑥 𝑑𝑥= 𝑑𝑡− 2𝑥 − 4 Now, I1 = −1 2 −2𝑥 − 4 − 𝑥2 − 4𝑥 + 5.𝑑𝑥 Putting the values of 𝑥2−4𝑥+5 and 𝑑𝑥 I1 = −1 2 −2𝑥 − 4 𝑡. 𝑑𝑡 −2𝑥 −4 I1 = −1 2 1 𝑡.𝑑𝑡 I1 = −1 2 1 𝑡 12.𝑑𝑡 I1 = −1 2 𝑡 −12 𝑑𝑡 I1 = −1 2 𝑡 −1 2 + 1 −1 2 + 1+𝐶1 I1 = −1 2 𝑡 1 2 12+𝐶1 I1 = − 𝑡 1 2 +𝐶1 I1 = − 𝑡+𝐶1 I1 = − − 𝑥2−4𝑥+5+𝐶1 I1 = − 5−4𝑥− 𝑥2+𝐶1 Taking 𝐈𝟐 I2 = 1 5 − 4𝑥 − 𝑥2.𝑑𝑥 I2 = 1 − 𝑥2 + 4𝑥 − 5𝑑𝑥 I2 = 1 − 𝑥2 + 2 2 𝑥 − 5𝑑𝑥 I2 = 1 − 𝑥2 + 2 2 𝑥 + 22 − 22 − 5𝑑𝑥 I2 = 1 − 𝑥+22 − 4 − 5𝑑𝑥 I2 = 1 − 𝑥+22 − 9𝑑𝑥 I2 = 1 9 − 𝑥 + 22𝑑𝑥 I2 = 1 32− 𝑥+22𝑑𝑥 I2 = sin−1 𝑥 + 23+𝐶2 Now, putting the values of I1 and I2 in eq. (1) we get 𝑥 + 3 5 − 4𝑥 − 𝑥2.𝑑𝑥= −1 2 − 2𝑥 − 4 5 − 4𝑥 − 𝑥2+ 1 5 − 4𝑥 − 𝑥2𝑑𝑥 =− 5 − 4𝑥 − 𝑥2+𝐶1+ sin−1 𝑥 + 23+𝐶2 =− 𝟓 − 𝟒𝒙 − 𝒙𝟐+ 𝒔𝒊𝒏−𝟏 𝒙 + 𝟐𝟑+𝑪