Ex 7.6, 22 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Integration by parts
Ex 7.6, 3
Ex 7.6, 23 (MCQ)
Example 17
Ex 7.6, 1
Ex 7.6, 2 Important
Ex 7.6, 12
Example 21 Important
Ex 7.6, 21
Ex 7.6, 5 Important
Ex 7.6, 4
Ex 7.6, 6
Ex 7.6, 15
Example 18 Important
Ex 7.6, 14 Important
Ex 7.6, 7 Important
Ex 7.6, 9
Ex 7.6, 8
Ex 7.6, 11
Example 20 Important
Ex 7.6, 13 Important
Ex 7.6, 22 Important You are here
Ex 7.6, 10 Important
Example 38 Important
Integration by parts
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.6, 22 Integrate the function sin^(β1) (2π₯/(1 + π₯2)) Simplifying the given function sin^(β1) (2π₯/(1 + π₯2)) Let π₯=tanβ‘π‘ β΄ π‘=tan^(β1)β‘(π₯) β΄ sin^(β1) (2π₯/(1 + π₯2))=sin^(β1) ((2 tanβ‘π‘" " )/(1 + tan^2β‘π‘ )) =sin^(β1) (sinβ‘2π‘ ) = 2t Ex 7.6, 22 Integrate the function sin^(β1) (2π₯/(1 + π₯2)) Simplifying the given function sin^(β1) (2π₯/(1 + π₯2)) Let π₯=tanβ‘π‘ β΄ π‘=tan^(β1)β‘(π₯) β΄ sin^(β1) (2π₯/(1 + π₯2))=sin^(β1) ((2 tanβ‘π‘" " )/(1 + tan^2β‘π‘ )) =sin^(β1) (sinβ‘2π‘ ) = 2t (ππ πππ sinβ‘2π=(2 tanβ‘π" " )/(1 + tan^2β‘π )) (ππ πππ sin^(β1) (sinβ‘π₯ )=π₯) =2 tan^(β1)β‘π₯ Thus, our function becomes β«1βγsin^(β1) (2π₯/(1 + π₯2)) ππ₯γ = 2β«1βγtan^(β1)β‘π₯ ππ₯γ =2β«1βγ(tan^(β1) π₯) 1.ππ₯ " " γ = 2 tan^(β1) π₯β«1βγ1 .γ ππ₯β2β«1β(π(tan^(β1)β‘π₯ )/ππ₯ β«1βγ1 .ππ₯γ) ππ₯ = 2tan^(β1) π₯ (π₯)β2β«1β1/(1 + π₯^2 ) . π₯ . ππ₯ Now we know that β«1βγπ(π₯) πβ‘(π₯) γ ππ₯=π(π₯) β«1βπ(π₯) ππ₯ββ«1β(πβ²(π₯)β«1βπ(π₯) ππ₯) ππ₯ Putting f(x) = tanβ1 x and g(x) = 1 (ππ πππ π‘=tan^(β1)β‘(π₯) ) = 2π₯ tan^(β1) π₯β2β«1βπ₯/(1 + π₯^2 ) . ππ₯ Solving I1 I1 = β«1βπ₯/(1 + π₯^2 ) . ππ₯" " Let 1 + π₯^2=π‘ Differentiating both sides π€.π.π‘.π₯ 0 + 2π₯=ππ‘/ππ₯ ππ₯=ππ‘/2π₯ Our equation becomes I1 = β«1βπ₯/(1 + π₯^2 ) . ππ₯" " Putting the value of (1+π₯^2 ) = t and ππ₯ = ππ‘/( 2π₯) , we get I1 = β«1βπ₯/π‘ . ππ‘/2π₯ I1 = 1/2 β«1β1/π‘ . ππ‘ I1 = 1/2 logβ‘γ |π‘|γ+πΆ1 I1 = 1/2 logβ‘γ |1+π₯^2 |γ+πΆ1 Putting the value of I1 in (1) , β«1βγsin^(β1) (2π₯/(1 + π₯2)) γ .ππ₯=2β«1βγ" " tan^(β1) π₯" " γ .ππ₯ =2π₯ tan^(β1) π₯β2β«1βπ₯/(1 + π₯^2 ) . ππ₯ =2π₯ tan^(β1) π₯β2(1/2 γlog γβ‘|1+π₯^2 |+πΆ1) (As t = 1 + x2) =2π₯ tan^(β1) π₯βγlog γβ‘|1+π₯^2 |β2πΆ1 =ππ γπππγ^(βπ) πβγπππ γβ‘(π+π^π )+πͺ As 1 + x2 is always positive |1+π₯^2 | = 1 + x2