Ex 7.6, 21 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Integration by parts
Ex 7.6, 3
Ex 7.6, 23 (MCQ)
Example 17
Ex 7.6, 1
Ex 7.6, 2 Important
Ex 7.6, 12
Example 21 Important
Ex 7.6, 21 You are here
Ex 7.6, 5 Important
Ex 7.6, 4
Ex 7.6, 6
Ex 7.6, 15
Example 18 Important
Ex 7.6, 14 Important
Ex 7.6, 7 Important
Ex 7.6, 9
Ex 7.6, 8
Ex 7.6, 11
Example 20 Important
Ex 7.6, 13 Important
Ex 7.6, 22 Important
Ex 7.6, 10 Important
Example 38 Important
Integration by parts
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.6, 21 - Chapter 7 Class 12 Integrals - NCERT Solution Integrate e^2x sin x I = ∫ e^2x sin x dx Using ILATE e^2x -> Exponential sin x -> Trigonometric We know that ∫ f(x) g(x) dx = f(x) ∫ g(x) dx - ∫ (f'(x) ∫ g(x)dx)dx Putting f(x) = e^2x, g(x) = sin x I = sin . 2 I = sin 2 sin 2 I = sin . 2 2 cos . 2 2 I = 1 2 . 2 sin 1 2 cos . 2 Solving I2 = 1 2 cos . 2 I1 = 1 2 cos . 2 = 1 2 cos 2 cos 2 = 1 2 cos . 2 2 ( sin ) . 2 2 = 1 2 2 . cos 2 + 1 2 2 sin = 1 2 2 . cos 2 + 1 2 I + 1 Putting the value of I1 in (1) , we get I = 2 sin I = 2 sin 2 1 2 2 . cos 2 + I 2 + 1 I = 2 2 sin 2 4 cos I 4 1 + I 4 = 2 sin 2 2 . cos 4 5 4 = 2 4 2 sin cos 1 = 4 5 . 2 4 2 sin cos 4 1 5 = +