Ex 7.6, 18 - Chapter 7 Class 12 Integrals (Important Question)
Last updated at April 16, 2024 by Teachoo
Chapter 7 Class 12 Integrals
Ex 7.1, 18 Important
Ex 7.1, 20
Ex 7.2, 20 Important
Ex 7.2, 26 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.3, 6 Important
Ex 7.3, 13 Important
Ex 7.3, 18 Important
Ex 7.3, 22 Important
Ex 7.3, 24 (MCQ) Important
Example 9 (i)
Example 10 (i)
Ex 7.4, 8 Important
Ex 7.4, 15 Important
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 25 (MCQ) Important
Example 15 Important
Ex 7.5, 9 Important
Ex 7.5, 11 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 21 Important
Example 20 Important
Example 22 Important
Ex 7.6, 13 Important
Ex 7.6, 14 Important
Ex 7.6, 18 Important You are here
Ex 7.6, 19
Ex 7.6, 24 (MCQ) Important
Ex 7.7, 5 Important
Ex 7.7, 10
Ex 7.7, 11 Important
Question 1 Important
Question 4 Important
Question 6 Important
Example 25 (i)
Ex 7.8, 15
Ex 7.8, 16 Important
Ex 7.8, 20 Important
Ex 7.8, 22 (MCQ)
Ex 7.9, 4
Ex 7.9, 7 Important
Ex 7.9, 8
Ex 7.9, 9 (MCQ) Important
Example 28 Important
Example 32 Important
Example 34 Important
Ex 7.10,8 Important
Ex 7.10, 18 Important
Example 38 Important
Example 39 Important
Example 42 Important
Misc 18 Important
Misc 8 Important
Question 1 Important
Misc 23 Important
Misc 29 Important
Question 2 Important
Misc 38 (MCQ) Important
Question 4 (MCQ) Important
Integration Formula Sheet Important
Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.6, 18 Integrate the function - ππ₯ ((1 + sinβ‘π₯)/(1 + cosβ‘π₯ )) Simplifying function π^π₯ ((1 + sinβ‘π₯)/(1 + cosβ‘π₯ )) π^π₯ ((1 + sinβ‘π₯)/(1 + cosβ‘π₯ ))=π^π₯ ((1 + 2 sinβ‘(π₯/2) cosβ‘(π₯/2))/(2 γπππ ^2γβ‘(π₯/2) )) πππβ‘ππ=π πππβ‘π πππβ‘π Replacing x by π₯/2 , we get γπ ππ 2γβ‘(π₯/2)=2 π ππβ‘(π₯/2) πππ β‘(π₯/2) π ππβ‘π₯=2 π ππβ‘(π₯/2) πππ β‘(π₯/2) ππ¨π¬β‘ππ= 2γ"cos" γ^π π½βπ Replacing ππ₯ by π₯/2 γπππ 2γβ‘(π₯/2)=2πππ ^2 (π₯/2)β1 1+πππ β‘π₯=2πππ ^2 π₯/2 We know γπ ππ^2γβ‘π₯+γπππ ^2γβ‘π₯β‘= 1 Replacing x by π₯/2 , we get γπ ππ^2γβ‘(π₯/2)β‘γ+γπππ ^2γβ‘(π₯/2) γ=1 =π^π₯ ((γπππγ^πβ‘(π/π) + γπππγ^πβ‘(π/π) +2 γsin γβ‘γπ₯/2γ . γcos γβ‘γπ₯/2γ)/( 2 γπππ ^2γβ‘(π₯/2) )) =π^π₯ ((γsin γβ‘γπ₯/2γ + γcos γβ‘γπ₯/2γ )^2/( 2 γπππ ^2γβ‘(π₯/2) )) =π^π₯/2 ((γsin γβ‘γπ₯/2γ + γcos γβ‘γπ₯/2γ)/( πππ β‘γ π₯/2γ ))^2 =π^π₯/2 (γsin γβ‘γπ₯/2γ/( πππ β‘γ π₯/2γ ) + γcos γβ‘γπ₯/2γ/( πππ β‘γ π₯/2γ ))^2 =π^π₯/2 (γtan γβ‘γπ₯/2γ +1)^2 =π^π₯/2 (tan^2β‘γπ₯/2γ +(1)^2+2(γtan γβ‘γπ₯/2γ )(1)) =π^π₯/2 (γγπππγ^π γβ‘γπ/πγ +π+2 γtan γβ‘γπ₯/2γ ) =π^π₯/2 (γγπππγ^π γβ‘γπ/πγ +2 γtan γβ‘(π₯/2) ) =π^π₯ (1/2 . sec^2β‘γπ₯/2γ +2/2 γtan γβ‘(π₯/2) ) =π^π₯ (γtan γβ‘(π₯/2)+1/2 sec^2β‘(π₯/2) ) We know γ1+tan^2γβ‘π₯=sec^2β‘π₯ Replacing x by π₯/2 , we get γ1+γπ‘ππ^2γβ‘(π₯/2)γβ‘= sec^2 (π₯/2) Thus, Our Integration becomes β«1βγπ^π₯ " " ((1 + sinβ‘π₯)/(1 + cosβ‘π₯ )) ππ₯γ " "=β«1βγπ^π₯ (γtan γβ‘(π₯/2)+1/2 sec^2β‘(π₯/2) )ππ₯γ " " It is of the form β«1βγπ^π₯ [π(π₯)+π^β² (π₯)] γ ππ₯=π^π₯ π(π₯)+πΆ Where π(π₯)=tan^(β1)β‘π₯ π^β² (π₯)= 1/(1 + π₯^2 ) So, our equation becomes β«1βγπ^π₯ " " ((1 + sinβ‘π₯)/(1 + cosβ‘π₯ )) ππ₯γ " " = π^π γπππ γβ‘γπ/πγ+πͺ