Ex 7.6, 14 Class 12 Maths - NCERT Solutions - Integrate x (log x)^2

Ex 7.6, 14 - Chapter 7 Class 12 Integrals - Part 2
Ex 7.6, 14 - Chapter 7 Class 12 Integrals - Part 3

Share on WhatsApp

Transcript

Ex 7.6, 14 〖𝑥(log⁡𝑥)〗^2 ∫1▒〖𝑥(log⁡𝑥 )^2.𝑑𝑥 " " 〗 ∴ ∫1▒〖𝑥(log⁡𝑥 )^2.𝑑𝑥〗=∫1▒〖(log⁡𝑥 )^2 𝑥 .𝑑𝑥〗 = (log⁡𝑥 )^2 ∫1▒〖𝑥 .〗 𝑑𝑥−∫1▒((𝑑(log⁡𝑥 )^2)/𝑑𝑥 ∫1▒〖𝑥 .𝑑𝑥〗) 𝑑𝑥 = (log⁡𝑥 )^2 . 𝑥^2/2−∫1▒(2(log⁡𝑥 ) 1/𝑥 ∫1▒〖𝑥 .𝑑𝑥〗) 𝑑𝑥 Now we know that ∫1▒〖𝑓(𝑥) 𝑔⁡(𝑥) 〗 𝑑𝑥=𝑓(𝑥) ∫1▒𝑔(𝑥) 𝑑𝑥−∫1▒(𝑓′(𝑥)∫1▒𝑔(𝑥) 𝑑𝑥) 𝑑𝑥 Putting f(x) = x and g(x) = (log x)2 = 𝑥^2/2 (log⁡𝑥 )^2−2∫1▒〖log⁡𝑥/𝑥 . 𝑥^2/2〗 𝑑𝑥 = 𝑥^2/2 (log⁡𝑥 )^2−∫1▒〖𝑥 log⁡𝑥 〗 𝑑𝑥 Solving I1 I1 = ∫1▒〖𝑥 log⁡𝑥 〗 𝑑𝑥 ∫1▒〖𝑥 log⁡𝑥 〗 𝑑𝑥=∫1▒(log⁡𝑥 )𝑥 𝑑𝑥 =log⁡𝑥 ∫1▒𝑥 𝑑𝑥−∫1▒(𝑑(log⁡𝑥 )/𝑑𝑥 ∫1▒〖𝑥.𝑑𝑥〗)𝑑𝑥 Now we know that ∫1▒〖𝑓(𝑥) 𝑔⁡(𝑥) 〗 𝑑𝑥=𝑓(𝑥) ∫1▒𝑔(𝑥) 𝑑𝑥−∫1▒(𝑓′(𝑥)∫1▒𝑔(𝑥) 𝑑𝑥) 𝑑𝑥 Putting f(x) = x and g(x) = log x =log⁡𝑥 (𝑥^2/2)−∫1▒〖1/𝑥 . 𝑥^2/2. 𝑑𝑥〗 =〖𝑥^2/2 log〗⁡〖 𝑥〗−1/2 ∫1▒〖𝑥. 𝑑𝑥〗 =〖𝑥^2/2 log〗⁡𝑥−1/2 . 𝑥^2/2 +𝐶 =〖𝑥^2/2 𝑙𝑜𝑔〗⁡〖 𝑥〗− 𝑥^2/4 +𝐶 Putting value of I1 in (1), ∫1▒〖𝑥(log⁡𝑥 )^2.𝑑𝑥〗=𝑥^2/2 (log⁡𝑥 )^2−∫1▒〖 𝒙 .𝒍𝒐𝒈⁡𝒙 𝒅𝒙〗 =𝑥^2/2 (log⁡𝑥 )^2−((𝑥^2 (log⁡𝑥 ))/2 − 𝑥^2/4 +𝐶1) =𝑥^2/2 (log⁡𝑥 )^2− (𝑥^2 (log⁡𝑥 ))/2 + 𝑥^2/4 −𝐶1 =𝒙^𝟐/𝟐 (𝒍𝒐𝒈⁡𝒙 )^𝟐− (𝒙^𝟐 (𝒍𝒐𝒈⁡𝒙 ))/𝟐 + 𝒙^𝟐/𝟒+𝑪 " "

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo