Ex 7.6, 14 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Integration by parts
Ex 7.6, 3
Ex 7.6, 23 (MCQ)
Example 17
Ex 7.6, 1
Ex 7.6, 2 Important
Ex 7.6, 12
Example 21 Important
Ex 7.6, 21
Ex 7.6, 5 Important
Ex 7.6, 4
Ex 7.6, 6
Ex 7.6, 15
Example 18 Important
Ex 7.6, 14 Important You are here
Ex 7.6, 7 Important
Ex 7.6, 9
Ex 7.6, 8
Ex 7.6, 11
Example 20 Important
Ex 7.6, 13 Important
Ex 7.6, 22 Important
Ex 7.6, 10 Important
Example 38 Important
Integration by parts
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.6, 14 ใ๐ฅ(logโก๐ฅ)ใ^2 โซ1โใ๐ฅ(logโก๐ฅ )^2.๐๐ฅ " " ใ โด โซ1โใ๐ฅ(logโก๐ฅ )^2.๐๐ฅใ=โซ1โใ(logโก๐ฅ )^2 ๐ฅ .๐๐ฅใ = (logโก๐ฅ )^2 โซ1โใ๐ฅ .ใ ๐๐ฅโโซ1โ((๐(logโก๐ฅ )^2)/๐๐ฅ โซ1โใ๐ฅ .๐๐ฅใ) ๐๐ฅ = (logโก๐ฅ )^2 . ๐ฅ^2/2โโซ1โ(2(logโก๐ฅ ) 1/๐ฅ โซ1โใ๐ฅ .๐๐ฅใ) ๐๐ฅ Now we know that โซ1โใ๐(๐ฅ) ๐โก(๐ฅ) ใ ๐๐ฅ=๐(๐ฅ) โซ1โ๐(๐ฅ) ๐๐ฅโโซ1โ(๐โฒ(๐ฅ)โซ1โ๐(๐ฅ) ๐๐ฅ) ๐๐ฅ Putting f(x) = x and g(x) = (log x)2 = ๐ฅ^2/2 (logโก๐ฅ )^2โ2โซ1โใlogโก๐ฅ/๐ฅ . ๐ฅ^2/2ใ ๐๐ฅ = ๐ฅ^2/2 (logโก๐ฅ )^2โโซ1โใ๐ฅ logโก๐ฅ ใ ๐๐ฅ Solving I1 I1 = โซ1โใ๐ฅ logโก๐ฅ ใ ๐๐ฅ โซ1โใ๐ฅ logโก๐ฅ ใ ๐๐ฅ=โซ1โ(logโก๐ฅ )๐ฅ ๐๐ฅ =logโก๐ฅ โซ1โ๐ฅ ๐๐ฅโโซ1โ(๐(logโก๐ฅ )/๐๐ฅ โซ1โใ๐ฅ.๐๐ฅใ)๐๐ฅ Now we know that โซ1โใ๐(๐ฅ) ๐โก(๐ฅ) ใ ๐๐ฅ=๐(๐ฅ) โซ1โ๐(๐ฅ) ๐๐ฅโโซ1โ(๐โฒ(๐ฅ)โซ1โ๐(๐ฅ) ๐๐ฅ) ๐๐ฅ Putting f(x) = x and g(x) = log x =logโก๐ฅ (๐ฅ^2/2)โโซ1โใ1/๐ฅ . ๐ฅ^2/2. ๐๐ฅใ =ใ๐ฅ^2/2 logใโกใ ๐ฅใโ1/2 โซ1โใ๐ฅ. ๐๐ฅใ =ใ๐ฅ^2/2 logใโก๐ฅโ1/2 . ๐ฅ^2/2 +๐ถ =ใ๐ฅ^2/2 ๐๐๐ใโกใ ๐ฅใโ ๐ฅ^2/4 +๐ถ Putting value of I1 in (1), โซ1โใ๐ฅ(logโก๐ฅ )^2.๐๐ฅใ=๐ฅ^2/2 (logโก๐ฅ )^2โโซ1โใ ๐ .๐๐๐โก๐ ๐ ๐ใ =๐ฅ^2/2 (logโก๐ฅ )^2โ((๐ฅ^2 (logโก๐ฅ ))/2 โ ๐ฅ^2/4 +๐ถ1) =๐ฅ^2/2 (logโก๐ฅ )^2โ (๐ฅ^2 (logโก๐ฅ ))/2 + ๐ฅ^2/4 โ๐ถ1 =๐^๐/๐ (๐๐๐โก๐ )^๐โ (๐^๐ (๐๐๐โก๐ ))/๐ + ๐^๐/๐+๐ช " "