Ex 7.6, 10 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Integration by parts
Ex 7.6, 3
Ex 7.6, 23 (MCQ)
Example 17
Ex 7.6, 1
Ex 7.6, 2 Important
Ex 7.6, 12
Example 21 Important
Ex 7.6, 21
Ex 7.6, 5 Important
Ex 7.6, 4
Ex 7.6, 6
Ex 7.6, 15
Example 18 Important
Ex 7.6, 14 Important
Ex 7.6, 7 Important
Ex 7.6, 9
Ex 7.6, 8
Ex 7.6, 11
Example 20 Important
Ex 7.6, 13 Important
Ex 7.6, 22 Important
Ex 7.6, 10 Important You are here
Example 38 Important
Integration by parts
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.6, 10 (sin^(β1)β‘π₯ )^2 β«1β(sin^(β1)β‘π₯ )^2 ππ₯ Let sin^(β1)β‘π₯=π β΄ π₯=sinβ‘π Differentiating both sides π€.π.π‘.π₯ ππ₯/ππ=cosβ‘π ππ₯=cosβ‘π.ππ Thus, our equation becomes β«1β(sin^(β1)β‘π₯ )^2 ππ₯ = β«1βπ^2 . cosβ‘π.ππ =π^2 β«1βγcosβ‘π.ππγββ«1β(π(π^2 )/ππ β«1βγcosβ‘π.ππγ)ππ =π^2 sinβ‘πββ«1βγ2π.sinβ‘π. ππγ =π^2 sinβ‘πβ2β«1βγπ½ πππβ‘π½. π π½γ We know that β«1βγπ(π₯) πβ‘(π₯) γ ππ₯=π(π₯) β«1βπ(π₯) ππ₯ββ«1β(π^β² (π₯) β«1βπ(π₯) ππ₯) ππ₯ Putting f(x) = ΞΈ2 and g(x) = cos ΞΈ Solving I1 β«1βγπ½ πππβ‘π½. π π½γ = πβ«1βγsinβ‘π ππγββ«1β(ππ/ππ β«1βγsinβ‘π ππγ) ππ = π(βcosβ‘π )ββ«1βγ1.(βcosβ‘π ) γ ππ = βπ cosβ‘π+β«1βcosβ‘π ππ = (βπ cosβ‘π+sinβ‘π )+πΆ1 Now we know that β«1βγπ(π₯) πβ‘(π₯) γ ππ₯=π(π₯) β«1βπ(π₯) ππ₯ββ«1β(πβ²(π₯)β«1βπ(π₯) ππ₯) ππ₯ Putting f(x) = ΞΈ and g(x) = sin ΞΈ Putting value of I1 in our equation β«1β(sin^(β1)β‘π₯ )^2 ππ₯ = π^2 sinβ‘πβ2β«1βγπ½ πππβ‘π½. π π½γ =π^2 sinβ‘πβ2(βπ cosβ‘π+sinβ‘π+πΆ1) =π^2 sinβ‘π+2π cosβ‘πβ2 sinβ‘πβ2πΆ1 =π^2 sinβ‘π+2πβ(1βsin^2β‘γπ γ )β2 sinβ‘πβπͺπ =π^2 sinβ‘π+2πβ(1βsin^2β‘γπ γ )β2 sinβ‘π+πͺ =(γπ¬π’π§γ^(βπ)β‘π )^π π+π(γπ¬π’π§γ^(βπ)β‘π ) β(γπβγβ‘γπ^π γ )βππ+πͺ ππ πππ π=sin^(β1)β‘π₯ & sinβ‘π=π₯