Ex 7.6, 9 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Integration by parts
Ex 7.6, 3
Ex 7.6, 23 (MCQ)
Example 17
Ex 7.6, 1
Ex 7.6, 2 Important
Ex 7.6, 12
Example 21 Important
Ex 7.6, 21
Ex 7.6, 5 Important
Ex 7.6, 4
Ex 7.6, 6
Ex 7.6, 15
Example 18 Important
Ex 7.6, 14 Important
Ex 7.6, 7 Important
Ex 7.6, 9 You are here
Ex 7.6, 8
Ex 7.6, 11
Example 20 Important
Ex 7.6, 13 Important
Ex 7.6, 22 Important
Ex 7.6, 10 Important
Example 38 Important
Integration by parts
Last updated at April 16, 2024 by Teachoo
Ex 7.6, 9 (Method 1) π₯ γcππ ^(β1)γβ‘π₯ β«1βπ₯ cos^(β1)β‘γπ₯ ππ₯γ Let x = cosβ‘π dx = β sinβ‘γπ ππγ Substituting values, we get β«1βπ₯ cos^(β1)β‘γπ₯ ππ₯ γ = β«1βcosβ‘π γπππγ^(βπ) (πππβ‘π½)(βsinβ‘γπ )ππγ = ββ«1βγγ sinγβ‘γπ γ π½ cosβ‘π ππγ = (β1)/2 β«1βγπ (2sinγβ‘γπ cosβ‘γπ) γ ππγ = (β1)/2 β«1βγγπ sinγβ‘2π ππγ Ex 7.6, 9 (Method 1) π₯ γcππ ^(β1)γβ‘π₯ β«1βπ₯ cos^(β1)β‘γπ₯ ππ₯γ Let x = cosβ‘π dx = β sinβ‘γπ ππγ Substituting values, we get β«1βπ₯ cos^(β1)β‘γπ₯ ππ₯ γ = β«1βcosβ‘π γπππγ^(βπ) (πππβ‘π½)(βsinβ‘γπ )ππγ = ββ«1βγγ sinγβ‘γπ γ π½ cosβ‘π ππγ = (β1)/2 β«1βγπ (2sinγβ‘γπ cosβ‘γπ) γ ππγ = (β1)/2 β«1βγγπ sinγβ‘2π ππγ (β΅γπππ γ^(β1)β‘γ(πππ β‘π)γ = π) (β΅2β‘sinβ‘π₯ cosβ‘π₯ = β‘sinβ‘2π₯ ) Integrating by parts β«1βγπ(π₯) πβ‘(π₯) γ ππ₯=π(π₯) β«1βπ(π₯) ππ₯ββ«1β(π^β² (π₯) β«1βπ(π₯) ππ₯) ππ₯ Putting f(x) = ΞΈ and g(x) = sin 2ΞΈ = (β1)/2 [πβ«sinβ‘2π ππββ«(ππ/ππβ«sin 2π ππ)ππ] = (β1)/2 [π (β(cosβ‘2π))/2ββ«1.(βγ(cosγβ‘2π))/2 ππ] = (β1)/2 [(βπ)/2 cosβ‘2π+1/2β«cos 2π ππ] = (β1)/2 [(βπ)/2 cosβ‘2π+1/2 ( sinβ‘2π)/2] + C = π/4 πππβ‘ππ½ β 1/8 πππβ‘ππ½ + C = π/4 (γππππγ^π π½ β 1) β 1/8 Γ 2 πππβ‘π½ ππ¨π¬ π½ + C = π/4 (γ2πππ γ^2 π β 1) β 1/4 π ππβ‘π πππ π + C = π/4 (γ2πππ γ^2 π β 1) β 1/4 πππ β‘π β(1βcos^2 π) + C = cos^(β1)β‘π₯/4 (2π₯^2β1)βπ₯/4 β(1βπ₯^2 )+C = ((γππγ^π β π))/π γπππγ^(βπ) πβπ/π β(πβπ^π )+π Using π₯=cosβ‘π βΉ π=cos^(β1)β‘π₯ Ex 7.6, 9 (Method 2) π₯ cos^(β1)β‘π₯ β«1βγπ₯ cos^(β1)β‘π₯ γ ππ₯ =cos^(β1)β‘π₯ β«1βπ₯ ππ₯ββ«1β(π(cos^(β1)β‘π₯ )/ππ₯ β«1βγπ₯ .ππ₯γ)ππ₯ = cos^(β1)β‘π₯. π₯^2/2 ββ«1βγ(β1)/β(1 β π₯^2 ) . π₯^2/2. ππ₯γ Now we know that β«1βγπ(π₯) πβ‘(π₯) γ ππ₯=π(π₯) β«1βπ(π₯) ππ₯ββ«1β(πβ²(π₯)β«1βπ(π₯) ππ₯) ππ₯ Putting f(x) = x and g(x) = cosβ1 x = π₯^2/2 cos^(β1)β‘π₯+1/2 β«1βγπ₯^2/β(1 β π₯^2 ) ππ₯γ Solving I1 I1 = 1/2 β«1βγπ₯^2/β(1 β π₯^2 ) ππ₯γ Multiplying and dividing by β1. I1 = 1/2 β«1βγγβπ₯γ^2/( ββ(1 β π₯^2 )) ππ₯γ I1 = (β1)/2 β«1βγγβπ₯γ^2/( β(1 β π₯^2 )) ππ₯γ I1 =(β1)/2 β«1βγγβ1 + 1 β π₯γ^2/( β(1 β π₯^2 )) ππ₯γ β¦(1) ("Adding and subtracting" "1 in numerator" ) I1 = (β1)/2 β«1βγ((β1)/β(1 β π₯^2 )+(1 βγ π₯γ^2)/β(1 β π₯^2 )) ππ₯γ I1 = (β1)/2 (β«1βγ(βπ)/β((π)^π βπ^π ).π πγ+β«1β(1βπ₯^2 )^(1 β 1/2) . ππ₯) I1 = (β1)/2 (βγπππγ^(βπ)β‘π +β«1β(1βπ₯^2 )^(1/2) . ππ₯) I1 = (β1)/2 (βsin^(β1)β‘π₯ +β«1ββ((1)^2βπ₯^2 ). ππ₯) I1 = (β1)/2 (βsin^(β1)β‘π₯ +π₯/2 β(1βπ₯^2 )+(1)^2/2 sin^(β1)β‘γ π₯/1γ+πΆ1) Using β«1βγππ₯/β(π^2 β π₯^2 )=sin^(β1)β‘γπ₯/πγ +πΆγ ππ πππ β(π^2βπ₯^2 ) ππ₯=1/π₯ π₯β(π^2βπ₯^2 )+π^2/2 sin^(β1)β‘γπ₯/πγ+πΆ I1 = (β1)/2 (βsin^(β1)β‘π₯+1/2 γ sinγ^(β1)β‘π₯+π₯/2 β(1βπ₯^2 )β‘+ πΆ1) I1 = (β1)/2 ((βsin^(β1)β‘π₯)/2 +π₯/2 β(1βπ₯^2 )β‘+ πΆ1) I1 = sin^(β1)β‘π₯/4 β π₯/4 β(1βπ₯^2 )β‘β πΆ1/2 Putting the value of I1 in eq. (1), we get β«1βγπ₯ cos^(β1)β‘π₯ ππ₯γ=π₯^2/2 cos^(β1)β‘π₯+(sin^(β1)β‘π₯/4 β π₯/4 β(1βπ₯^2 )β‘β πΆ1/2) =π₯^2/2 cos^(β1)β‘π₯+1/4 sin^(β1)β‘π₯β π₯/4 β(1βπ₯^2 )β‘+ πΆ1/2 =π₯^2/2 cos^(β1)β‘π₯+1/4 (π/2βcos^(β1)β‘π₯ )β π₯/4 β(1βπ₯^2 )β‘+ πΆ1/2 =π₯^2/2 cos^(β1)β‘π₯+π/8β1/4 cos^(β1)β‘π₯β π₯/4 β(1βπ₯^2 )β‘+ πΆ1/2 =π₯^2/2 cos^(β1)β‘π₯β1/4 cos^(β1)β‘π₯β π₯/4 β(1βπ₯^2 )β‘+ πΆ1/2 +π/8 =π₯^2/2 cos^(β1)β‘π₯β1/4 cos^(β1)β‘π₯β π₯/4 β(1βπ₯^2 )β‘+ πΆ = cos^(β1)β‘π₯ (π₯^2/2β1/4)β π₯/4 β(1βπ₯^2 )β‘+ πΆ = cos^(β1)β‘π₯ ((γ2π₯γ^2 β 1)/4)β π₯/4 β(1βπ₯^2 )β‘+ πΆ = ((γππγ^π+ π)/π) γπππγ^(βπ)β‘πβ π/π β(πβπ^π )β‘+ πͺ