Ex 7.6, 3 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Integration by parts
Ex 7.6, 3 You are here
Ex 7.6, 23 (MCQ)
Example 17
Ex 7.6, 1
Ex 7.6, 2 Important
Ex 7.6, 12
Example 21 Important
Ex 7.6, 21
Ex 7.6, 5 Important
Ex 7.6, 4
Ex 7.6, 6
Ex 7.6, 15
Example 18 Important
Ex 7.6, 14 Important
Ex 7.6, 7 Important
Ex 7.6, 9
Ex 7.6, 8
Ex 7.6, 11
Example 20 Important
Ex 7.6, 13 Important
Ex 7.6, 22 Important
Ex 7.6, 10 Important
Example 38 Important
Integration by parts
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.6, 3 Integrate the function 𝑥^2 𝑒𝑥 ∫1▒〖𝑥^2 𝑒^𝑥 𝑑𝑥〗 = 𝑥^2 ∫1▒〖𝑒𝑥 𝑑𝑥〗−∫1▒(𝑑(𝑥^2 )/𝑑𝑥 ∫1▒〖𝑒𝑥 𝑑𝑥〗) 𝑑𝑥 = 𝑥^2. 𝑒𝑥 −∫1▒〖2𝑥 . 𝑒𝑥〗 𝑑𝑥 = 𝑥^2. 𝑒𝑥 −2∫1▒〖𝒙 . 𝒆𝒙〗 𝒅𝒙 Now we know that ∫1▒〖𝑓(𝑥) 𝑔(𝑥) 〗 𝑑𝑥=𝑓(𝑥) ∫1▒𝑔(𝑥) 𝑑𝑥−∫1▒(𝑓′(𝑥)∫1▒𝑔(𝑥) 𝑑𝑥) 𝑑𝑥 Putting f(x) = x2 and g(x) = ex …(1) Solving I1 ∫1▒〖𝑥 𝑒^𝑥 𝑑𝑥〗 = 𝑥∫1▒𝑒𝑥 𝑑𝑥−∫1▒(𝑑𝑥/𝑑𝑥 ∫1▒𝑒^𝑥 𝑑𝑥) 𝑑𝑥 = 𝑥𝑒𝑥 −∫1▒𝑒𝑥 𝑑𝑥 = 𝑥𝑒𝑥 −𝑒𝑥 Now we know that ∫1▒〖𝑓(𝑥) 𝑔(𝑥) 〗 𝑑𝑥=𝑓(𝑥) ∫1▒𝑔(𝑥) 𝑑𝑥−∫1▒(𝑓′(𝑥)∫1▒𝑔(𝑥) 𝑑𝑥) 𝑑𝑥 Putting f(x) = x and g(x) = ex Putting value of I1 in our equation ∴ ∫1▒〖𝑥^2 𝑒𝑥" " 〗 𝑑𝑥" = " 𝑥^2. 𝑒𝑥 −2∫1▒〖𝒙 . 𝒆𝒙〗 𝒅𝒙 =𝑥^2. 𝑒𝑥 −2(𝒙𝒆𝒙−𝒆^𝒙 )+𝐶 =𝑥^2. 𝑒𝑥 −2𝑥𝑒𝑥+〖2𝑒〗^𝑥+𝐶 =𝒆𝒙 (𝒙^𝟐−𝟐𝒙+𝟐)+𝑪