Chapter 7 Class 12 Integrals
Concept wise

Ex 7.5, 23 - Integrate dx / x (x^2 + 1) equals (A) log |x| - 1/2

Ex 7.5, 23 - Chapter 7 Class 12 Integrals - Part 2
Ex 7.5, 23 - Chapter 7 Class 12 Integrals - Part 3
Ex 7.5, 23 - Chapter 7 Class 12 Integrals - Part 4

Go Ad-free

Transcript

Ex 7.5, 23 ∫1▒𝑑π‘₯/(π‘₯(π‘₯2 + 1) ) equals log |π‘₯| – 1/(2 ) log (x2+1) + C log |π‘₯| + 1/(2 ) log (x2+1) + C log |π‘₯| + 1/(2 ) log (x2+1) + C 1/(2 ) log |π‘₯| + log (x2+1) + C ∫1▒𝑑π‘₯/(π‘₯(π‘₯2 + 1) ) Let t = (1+π‘₯^2) Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑑𝑑/𝑑π‘₯ = 0+2π‘₯ 𝑑π‘₯ = 𝑑𝑑/2π‘₯ Thus, our equation becomes ∫1▒𝑑π‘₯/(π‘₯(π‘₯^2 + 1) ) = ∫1β–’1/(π‘₯ 𝑑) 𝑑𝑑/2π‘₯ = 1/2 ∫1β–’γ€– 𝑑𝑑/𝑑×1/π‘₯^2 γ€— = 1/2 ∫1▒𝑑𝑑/(𝑑(𝑑 βˆ’ 1)) We can write integrand as Since t = (1+π‘₯^2) x2 = (t – 1) 1/(𝑑(𝑑 βˆ’ 1)) = 𝐴/𝑑 + 𝐡/(𝑑 βˆ’ 1) 1/(𝑑(𝑑 βˆ’ 1)) = (𝐴(𝑑 βˆ’ 1) + 𝐡𝑑)/(𝑑(𝑑 βˆ’ 1)) Cancelling denominator 1 = 𝐴(π‘‘βˆ’1)+𝐡𝑑 Putting t = 0 in (1) 1 = 𝐴(0βˆ’1)+𝐡×0 1 = βˆ’π΄ 𝐴 = βˆ’1 Putting t = 1 in (1) 1 = 𝐴(1βˆ’1)+𝐡(1) 1 = 𝐴×0+𝐡 1 = 𝐡 𝐡 = 1 Therefore 1/2 ∫1▒𝑑𝑑/(𝑑(𝑑 βˆ’ 1)) = 1/2 ∫1β–’γ€–(βˆ’1)/𝑑 γ€— 𝑑𝑑 + 1/2 ∫1β–’γ€–1/(𝑑 βˆ’ 1) γ€— 𝑑𝑑 = (βˆ’1)/2 γ€–log 〗⁑|𝑑|+ 1/2 γ€–log 〗⁑|π‘‘βˆ’1|+𝐢 Putting back t = (1+π‘₯^2) = (βˆ’1)/2 γ€–log 〗⁑|1+π‘₯^2 |+ 1/2 γ€–log 〗⁑|1+π‘₯^2βˆ’1|+𝐢 = (βˆ’1)/2 γ€–log 〗⁑|1+π‘₯^2 |+ 1/2 γ€–log 〗⁑|π‘₯^2 |+𝐢 = (βˆ’1)/2 γ€–log 〗⁑|1+π‘₯^2 |+ 1/2Γ—2 γ€–log 〗⁑|π‘₯|+𝐢 = (βˆ’1)/2 γ€–log 〗⁑|1+π‘₯^2 |+ γ€–log 〗⁑|π‘₯|+𝐢 As 1 + π‘₯^2 it is always positive = γ€–log 〗⁑|π‘₯|βˆ’ 1/2 γ€–log 〗⁑〖(π‘₯^2+1)γ€—+𝐢 ∴ Correct answer is A . (log π‘₯^π‘Ž=π‘Ž log⁑π‘₯)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo