Ex 7.5, 21 - Chapter 7 Class 12 Integrals (Important Question)
Last updated at April 16, 2024 by Teachoo
Chapter 7 Class 12 Integrals
Ex 7.1, 18 Important
Ex 7.1, 20
Ex 7.2, 20 Important
Ex 7.2, 26 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.3, 6 Important
Ex 7.3, 13 Important
Ex 7.3, 18 Important
Ex 7.3, 22 Important
Ex 7.3, 24 (MCQ) Important
Example 9 (i)
Example 10 (i)
Ex 7.4, 8 Important
Ex 7.4, 15 Important
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 25 (MCQ) Important
Example 15 Important
Ex 7.5, 9 Important
Ex 7.5, 11 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 21 Important You are here
Example 20 Important
Example 22 Important
Ex 7.6, 13 Important
Ex 7.6, 14 Important
Ex 7.6, 18 Important
Ex 7.6, 19
Ex 7.6, 24 (MCQ) Important
Ex 7.7, 5 Important
Ex 7.7, 10
Ex 7.7, 11 Important
Question 1 Important
Question 4 Important
Question 6 Important
Example 25 (i)
Ex 7.8, 15
Ex 7.8, 16 Important
Ex 7.8, 20 Important
Ex 7.8, 22 (MCQ)
Ex 7.9, 4
Ex 7.9, 7 Important
Ex 7.9, 8
Ex 7.9, 9 (MCQ) Important
Example 28 Important
Example 32 Important
Example 34 Important
Ex 7.10,8 Important
Ex 7.10, 18 Important
Example 38 Important
Example 39 Important
Example 42 Important
Misc 18 Important
Misc 8 Important
Question 1 Important
Misc 23 Important
Misc 29 Important
Question 2 Important
Misc 38 (MCQ) Important
Question 4 (MCQ) Important
Integration Formula Sheet Important
Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.5, 21 Integrate the function 1/((๐^๐ฅ โ 1) ) [Hint : Put ex = t] Let ๐^๐ฅ = ๐ก Differentiating both sides ๐ค.๐.๐ก.๐ฅ ๐^๐ฅ = ๐๐ก/๐๐ฅ ๐๐ฅ = ๐๐ก/๐^๐ฅ Therefore โซ1โ1/((๐^๐ฅ โ 1) ) ๐๐ฅ = โซ1โ1/((๐ก โ 1) ) ๐๐ก/๐^๐ฅ = โซ1โ๐๐ก/(๐ก(๐ก โ 1) ) We can write integrand as 1/(๐ก(๐ก โ 1) ) = ๐ด/๐ก + ๐ต/(๐ก โ 1) 1/(๐ก(๐ก โ 1) ) = (๐ด(๐ก โ 1) + ๐ต๐ก)/๐ก(๐ก โ 1) Cancelling denominator 1 = ๐ด(๐กโ1)+๐ต๐ก Putting t = 0 in (1) 1 = ๐ด(0โ1)+๐ตร0 1 = ๐ดร(โ1) 1 = โ๐ด ๐ด = โ1 Putting t = 1 1 = ๐ด(1โ1)+๐ตร1 1 = ๐ดร0+๐ต 1 = ๐ต ๐ต = 1 Therefore โซ1โ1/(๐ก(๐ก โ 1) ) ๐๐ก = โซ1โ(โ1)/(๐ก ) ๐๐ก + โซ1โ1/(๐ก โ 1 ) = โใlog ใโก|๐ก|+ใlog ใโก|๐กโ1|+๐ถ = ใlog ใโก|(๐ก โ 1)/๐ก|+๐ถ Putting back t = ๐^๐ฅ = ใ๐๐๐ ใโก|(๐^๐ฅ โ 1)/๐^๐ฅ |+๐ถ = ใ๐ฅ๐จ๐ ใโก((๐^๐ โ ๐)/๐^๐ )+๐ช Since ex > 1 for x > 0 โด ex โ 1 > 0 โ |(๐^๐ โ ๐)/๐^๐ |=((๐^๐ โ ๐)/๐^๐ ) ("As " ๐๐๐ ๐ดโ๐๐๐ ๐ต" = " ๐๐๐ ๐ด/๐ต)