Ex 7.5, 18 - Chapter 7 Class 12 Integrals (Important Question)
Last updated at Dec. 16, 2024 by Teachoo
Chapter 7 Class 12 Integrals
Ex 7.1, 18 Important
Ex 7.1, 20
Ex 7.2, 20 Important
Ex 7.2, 26 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.3, 6 Important
Ex 7.3, 13 Important
Ex 7.3, 18 Important
Ex 7.3, 22 Important
Ex 7.3, 24 (MCQ) Important
Example 9 (i)
Example 10 (i)
Ex 7.4, 8 Important
Ex 7.4, 15 Important
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 25 (MCQ) Important
Example 15 Important
Ex 7.5, 9 Important
Ex 7.5, 11 Important
Ex 7.5, 17
Ex 7.5, 18 Important You are here
Ex 7.5, 21 Important
Example 20 Important
Example 22 Important
Ex 7.6, 13 Important
Ex 7.6, 14 Important
Ex 7.6, 18 Important
Ex 7.6, 19
Ex 7.6, 24 (MCQ) Important
Ex 7.7, 5 Important
Ex 7.7, 10
Ex 7.7, 11 Important
Question 1 Important
Question 4 Important
Question 6 Important
Example 25 (i)
Ex 7.8, 15
Ex 7.8, 16 Important
Ex 7.8, 20 Important
Ex 7.8, 22 (MCQ)
Ex 7.9, 4
Ex 7.9, 7 Important
Ex 7.9, 8
Ex 7.9, 9 (MCQ) Important
Example 28 Important
Example 32 Important
Example 34 Important
Ex 7.10,8 Important
Ex 7.10, 18 Important
Example 38 Important
Example 39 Important
Example 42 Important
Misc 18 Important
Misc 8 Important
Question 1 Important
Misc 23 Important
Misc 29 Important
Question 2 Important
Misc 38 (MCQ) Important
Question 4 (MCQ) Important
Integration Formula Sheet Important
Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.5, 18 Integrate the function (๐ฅ2+ 1)(๐ฅ2+ 2)/(๐ฅ2+ 3)(๐ฅ2+ 4) (๐ฅ^2 + 1)(๐ฅ^2 + 2)/(๐ฅ^2 + 3)(๐ฅ^2 + 4) " " Let t = ๐ฅ^2 = (๐ก + 1)(๐ก + 2)/(๐ก + 3)(๐ก + 4) = (๐ก^2 + 3๐ก + 2)/(๐ก^2 + 7๐ก + 12) = 1 + (โ4๐ก โ10)/(๐ก^2 + 7๐ก + 12) = 1 + (โ(4๐ก + 10))/(๐ก + 3)(๐ก + 4) Rough = 1 โ ( (4๐ก + 10))/(๐ก + 3)(๐ก + 4) We can write (4๐ก + 10)/((๐ก + 3) (๐ก + 4) ) = ๐ด/((๐ก + 3) ) + ๐ต/((๐ก + 4) ) (4๐ก + 10)/((๐ก + 3) (๐ก + 4) ) = (๐ด(๐ก + 4) + ๐ต(๐ก + 3))/((๐ก + 3) (๐ก + 4) ) Cancelling denominator 4๐กโ10 = ๐ด(๐ก+4)+๐ต(๐ก+3) Putting t = โ 4 in (1) 4(โ4)+10 = ๐ด(โ4+4)+๐ต(โ4+3) โ16+10 = ๐ดร0+๐ต(โ1) โฆ(1) โ6 = ๐ดร0+๐ต(โ1) โ6 = โ๐ต ๐ต = 6 Putting t = โ3 in (1) 4๐กโ10 = ๐ด(๐ก+4)+๐ต(๐ก+3) 4(โ3)+10 = ๐ด(โ3+4)+๐ต(โ3+3) โ12+10 = ๐ดร1+๐ตร0 โ2 = ๐ด ๐ด = โ2 Hence we can write (4๐ก + 10)/((๐ก + 3) (๐ก + 4) ) = (โ2)/((๐ก + 3) ) + 6/((๐ก + 4) ) Putting back t = ๐ฅ^2 (4๐ฅ^2 โ 10)/((๐ฅ^2 + 3) (๐ฅ^2 + 4) ) = (โ2)/((๐ฅ^2 + 3) ) + 6/((๐ฅ^2 + 4) ) Therefore โซ1โ(๐ฅ2+ 1)(๐ฅ2+ 2)/(๐ฅ2+ 3)(๐ฅ2+ 4) = โซ1โใ1โ[(โ2)/((๐ฅ^2 + 3) ) + 6/((๐ฅ^2 + 4) )] ใ ๐๐ฅ = โซ1โ1. ๐๐ฅ + โซ1โ2/((๐ฅ^2 + 3) ) ๐๐ฅ โ โซ1โ6/((๐ฅ^2 + 4) ) ๐๐ฅ = โซ1โ1. ๐๐ฅ + 2โซ1โ1/(๐ฅ^2 + (โ3)^2 ) ๐๐ฅ โ 6โซ1โ1/((๐ฅ^2 +2^2 ) ) ๐๐ฅ = ๐ฅ + 2 ร 1/โ3 tan^(โ1)โกใ ๐ฅ/โ3ใ โ 6 ร 1/2 tan^(โ1)โกใ ๐ฅ/2ใ+๐ถ = ๐ + ๐/โ๐ ใ๐๐๐ใ^(โ๐)โก(๐/โ๐)โ๐ ใ๐๐๐ใ^(โ๐)โก(๐/๐)+๐ช