Ex 7.5, 9 - Chapter 7 Class 12 Integrals (Important Question)
Last updated at April 16, 2024 by Teachoo
Chapter 7 Class 12 Integrals
Ex 7.1, 18 Important
Ex 7.1, 20
Ex 7.2, 20 Important
Ex 7.2, 26 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.3, 6 Important
Ex 7.3, 13 Important
Ex 7.3, 18 Important
Ex 7.3, 22 Important
Ex 7.3, 24 (MCQ) Important
Example 9 (i)
Example 10 (i)
Ex 7.4, 8 Important
Ex 7.4, 15 Important
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 25 (MCQ) Important
Example 15 Important
Ex 7.5, 9 Important You are here
Ex 7.5, 11 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 21 Important
Example 20 Important
Example 22 Important
Ex 7.6, 13 Important
Ex 7.6, 14 Important
Ex 7.6, 18 Important
Ex 7.6, 19
Ex 7.6, 24 (MCQ) Important
Ex 7.7, 5 Important
Ex 7.7, 10
Ex 7.7, 11 Important
Question 1 Important
Question 4 Important
Question 6 Important
Example 25 (i)
Ex 7.8, 15
Ex 7.8, 16 Important
Ex 7.8, 20 Important
Ex 7.8, 22 (MCQ)
Ex 7.9, 4
Ex 7.9, 7 Important
Ex 7.9, 8
Ex 7.9, 9 (MCQ) Important
Example 28 Important
Example 32 Important
Example 34 Important
Ex 7.10,8 Important
Ex 7.10, 18 Important
Example 38 Important
Example 39 Important
Example 42 Important
Misc 18 Important
Misc 8 Important
Question 1 Important
Misc 23 Important
Misc 29 Important
Question 2 Important
Misc 38 (MCQ) Important
Question 4 (MCQ) Important
Integration Formula Sheet Important
Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.5, 9 Integrate the function (3π₯ + 5)/(π₯^3 β π₯^2 β π₯ + 1) Let I=β«1β(3π₯ + 5)/(π₯^3 β π₯^2 β π₯ + 1) ππ₯ We can write integrand as (3π₯ + 5)/(π₯^3 β π₯^2 β π₯ + 1)=(3π₯ + 5)/(π₯ β 1)(π₯^2 β 1) =(3π₯ + 5)/(π₯ β 1)(π₯^2 β 1^2 ) =(3π₯ + 5)/((π₯ β 1) (π₯ β 1) (π₯ + 1) ) =(3π₯ + 5)/γ(π₯ + 1) (π₯ β 1)γ^2 Rough π₯^3βπ₯^2βπ₯+1 Put π₯=1 1^3β1^2β1+1 =1β1β1+1 =0 So, π₯β1 is a factor of π₯^3βπ₯^2βπ₯+1 We can write it as (3π₯ + 5)/γ(π₯ + 1) (π₯ β 1)γ^2 =π΄/((π₯ + 1) ) + π΅/((π₯ β 1) ) + πΆ/(π₯ β 1)^2 (3π₯ + 5)/γ(π₯ + 1) (π₯ β 1)γ^2 =(π΄(π₯ β 1)^2 + π΅(π₯ + 1)(π₯ β 1) + πΆ(π₯ + 1))/(π₯ + 1)(π₯ β 1)(π₯ β 1) (3π₯ + 5)/γ(π₯ + 1) (π₯ β 1)γ^2 =(π΄(π₯ β 1)^2 + π΅(π₯^2 β 1) + πΆ(π₯ + 1))/((π₯ + 1) (π₯ β 1)^2 ) By Cancelling denominator 3π₯+5=π΄(π₯β1)^2+π΅(π₯^2β1)+πΆ(π₯+1) Put π₯=1 in (1) 3Γ1+5=π΄(1β1)^2+π΅(1^2β1)+πΆ(1+1) 8=π΄Γ0+ π΅Γ0+πΆΓ2 β¦(1) 8=2πΆ πΆ=4 Putting π₯=β1 in (1) 3π₯+5=π΄(π₯β1)^2+π΅(π₯^2β1)+πΆ(π₯+1) 3(β1)+5=π΄(β1β1)^2+π΅((β1)^2β1)+πΆ(β1+1) β3+5=π΄(β2)^2+π΅(1β1)+πΆ(0) 2=4π΄+π΅Γ0+πΆΓ0 2=4π΄ π΄=1/2 Putting x = 0 in (1) 3π₯+5=π΄(π₯β1)^2+π΅(π₯^2β1)+πΆ(π₯+1) 3(0)+5=π΄(0β1)^2+π΅(0β1)+πΆ(0+1) 5=π΄βπ΅+πΆ 5= 1/2 βπ΅+4 5= βπ΅+9/2 π΅=9/2 β5 π΅=(β1)/2 Hence, we can our equation as write (3π₯ + 5)/γ(π₯ + 1) (π₯ β 1)γ^2 =π΄/((π₯ + 1) ) + π΅/((π₯ β 1) ) + πΆ/(π₯ β 1)^2 (3π₯ + 5)/γ(π₯ + 1) (π₯ β 1)γ^2 =((1/2))/((π₯ + 1) ) + (β 1/2)/((π₯ β 1) ) + 4/(π₯ β 1)^2 (3π₯ + 5)/γ(π₯ + 1) (π₯ β 1)γ^2 =1/2(π₯ + 1) β 1/2(π₯ β 1) + 4/(π₯ β 1)^2 Integrating π€.π.π‘.π₯ I=β«1β(3π₯ + 5)/(π₯^3 β π₯^2 β π₯ + 1) ππ₯ =β«1β(1/2(π₯ + 1) β 1/2(π₯ β 1) + 4/(π₯ β 1)^2 ) ππ₯ =1/2 β«1βππ₯/(π₯ + 1) β 1/2 β«1βππ₯/((π₯ β 1) )+4β«1βππ₯/(π₯ β 1)^2 Hence I=I1βI2+I3 Now, I1=1/2 β«1β1/(π₯ + 1) ππ₯ =1/2 logβ‘|π₯+1|+πΆ1 Also, I2 =1/2 β«1β1/(π₯ β 1) ππ₯ = 1/2 logβ‘|π₯β1|+πΆ2 And, I3=β«1β4/(π₯ β 1)^2 ππ₯ =4β«1β1/(π₯ β 1)^2 ππ₯ =4β«1β(π₯ β 1)^(β2) ππ₯ =(4(π₯ β 1)^(β2 + 1))/(β2 + 1) +πΆ3 =(4(π₯ β 1)^(β1))/(β1) +πΆ3 =(β 4)/(π₯ β 1)+πΆ3 Therefore I=I1βI2+I3 I=1/2 logβ‘|π₯+1|+πΆ1β 1/2 logβ‘|π₯β1|βπΆ2+(β 4)/(π₯ β 1)+πΆ3 =1/2 logβ‘|π₯+1|+β 1/2 logβ‘|π₯β1|β4/(π₯ β 1) +πΆ1βπΆ2+πΆ3 =1/2 [logβ‘|π₯+1|βlogβ‘|π₯β1| ]β4/(π₯ β 1) +πΆ =π/π πππβ‘|(π + π)/(π β π)|β π/(π β π) +πͺ