Chapter 7 Class 12 Integrals
Concept wise

Slide10.JPG

Slide11.JPG
Slide12.JPG

Go Ad-free

Transcript

Ex 7.5, 1 ๐‘ฅ/((๐‘ฅ + 1) (๐‘ฅ + 2) ) Solving integrand ๐‘ฅ/((๐‘ฅ + 1) (๐‘ฅ + 2) ) We can write it as ๐’™/((๐’™ + ๐Ÿ) (๐’™ + ๐Ÿ) ) " " = ๐‘จ/((๐’™ + ๐Ÿ) ) + ๐‘ฉ/((๐’™ + ๐Ÿ) ) ๐‘ฅ/((๐‘ฅ + 1) (๐‘ฅ + 2) ) " " = (๐ด(๐‘ฅ + 2) + ๐ต (๐‘ฅ + 1))/((๐‘ฅ + 1) (๐‘ฅ + 2) ) Cancelling denominator ๐’™ = ๐‘จ(๐’™+๐Ÿ) + ๐‘ฉ(๐’™+๐Ÿ) Putting ๐’™=โˆ’๐Ÿ in (1) โˆ’1=๐ด(โˆ’1+2) + ๐ต(โˆ’1+1) โˆ’1=๐ด ร— 1+ ๐ต ร— 0 โˆ’1=๐ด ๐‘จ=โˆ’๐Ÿ Putting ๐’™=โˆ’๐Ÿ in (1) โˆ’2 = ๐ด(โˆ’2+2) + ๐ต(โˆ’2+1) โˆ’2 = ๐ด ร— 0+ ๐ต ร— (โˆ’1) โˆ’2 = โˆ’ ๐ต ๐‘ฉ = ๐Ÿ Hence we can write it as ๐’™/((๐’™ + ๐Ÿ) (๐’™ + ๐Ÿ) ) = (โˆ’๐Ÿ)/((๐’™ + ๐Ÿ) ) + ๐Ÿ/((๐’™ + ๐Ÿ) ) Therefore โˆซ1โ–’๐’™/((๐’™ + ๐Ÿ) (๐’™ + ๐Ÿ) ) ๐’…๐’™ = โˆซ1โ–’(โˆ’1)/((๐‘ฅ + 1) ) ๐‘‘๐‘ฅ + โˆซ1โ–’2/((๐‘ฅ + 2) ) ๐‘‘๐‘ฅ = โˆ’1โˆซ1โ–’1/((๐‘ฅ + 1) ) ๐‘‘๐‘ฅ + 2โˆซ1โ–’1/((๐‘ฅ + 2) ) ๐‘‘๐‘ฅ = โˆ’ใ€–๐ฅ๐จ๐  ใ€—โก|๐’™+๐Ÿ|+๐Ÿ ใ€–๐ฅ๐จ๐  ใ€—โก|๐’™+๐Ÿ|+๐‘ช = โˆ’ใ€–log ใ€—โก|๐‘ฅ+1|+ใ€–log ใ€—โกใ€–|๐‘ฅ+2|^2 ใ€—+๐ถ = ใ€–log ใ€—โก|(๐‘ฅ + 2)^2/(๐‘ฅ + 1)|+๐ถ = ใ€–๐ฅ๐จ๐  ใ€—โกใ€–(๐’™ + ๐Ÿ)^๐Ÿ/|๐’™ + ๐Ÿ| ใ€— +๐‘ช As ๐’๐’๐’ˆ ๐‘จโˆ’๐’๐’๐’ˆ ๐‘ฉ=๐‘™๐‘œ๐‘” ๐ด/๐ต As (๐‘ฅ+2)^2is always positive

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo