Ex 7.4, 22 - Chapter 7 Class 12 Integrals (Important Question)
Last updated at April 16, 2024 by Teachoo
Chapter 7 Class 12 Integrals
Ex 7.1, 18 Important
Ex 7.1, 20
Ex 7.2, 20 Important
Ex 7.2, 26 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.3, 6 Important
Ex 7.3, 13 Important
Ex 7.3, 18 Important
Ex 7.3, 22 Important
Ex 7.3, 24 (MCQ) Important
Example 9 (i)
Example 10 (i)
Ex 7.4, 8 Important
Ex 7.4, 15 Important
Ex 7.4, 21 Important
Ex 7.4, 22 You are here
Ex 7.4, 25 (MCQ) Important
Example 15 Important
Ex 7.5, 9 Important
Ex 7.5, 11 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 21 Important
Example 20 Important
Example 22 Important
Ex 7.6, 13 Important
Ex 7.6, 14 Important
Ex 7.6, 18 Important
Ex 7.6, 19
Ex 7.6, 24 (MCQ) Important
Ex 7.7, 5 Important
Ex 7.7, 10
Ex 7.7, 11 Important
Question 1 Important
Question 4 Important
Question 6 Important
Example 25 (i)
Ex 7.8, 15
Ex 7.8, 16 Important
Ex 7.8, 20 Important
Ex 7.8, 22 (MCQ)
Ex 7.9, 4
Ex 7.9, 7 Important
Ex 7.9, 8
Ex 7.9, 9 (MCQ) Important
Example 28 Important
Example 32 Important
Example 34 Important
Ex 7.10,8 Important
Ex 7.10, 18 Important
Example 38 Important
Example 39 Important
Example 42 Important
Misc 18 Important
Misc 8 Important
Question 1 Important
Misc 23 Important
Misc 29 Important
Question 2 Important
Misc 38 (MCQ) Important
Question 4 (MCQ) Important
Integration Formula Sheet Important
Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.4, 22 Integrate the function (𝑥 + 3)/(𝑥^2 − 2𝑥 − 5) ∫1▒(𝑥 + 3)/(𝑥^2 − 2𝑥 − 5) 𝑑𝑥 =1/2 ∫1▒(2𝑥 + 6)/(𝑥^2 − 2𝑥 − 5) 𝑑𝑥 =1/2 ∫1▒(2𝑥 − 2 + 2 + 6 )/(𝑥^2 − 2𝑥 − 5) 𝑑𝑥 =1/2 ∫1▒(2𝑥 − 2)/(𝑥^2 − 2𝑥 − 5) 𝑑𝑥+8/2 ∫1▒𝑑𝑥/(𝑥^2 − 2𝑥 − 5) =1/2 ∫1▒(2𝑥 − 2)/(𝑥^2 − 2𝑥 − 5) 𝑑𝑥+4∫1▒𝑑𝑥/(𝑥^2 − 2𝑥 − 5) Rough (𝑥^2−2𝑥−5)^′=2𝑥−2 Solving 𝑰𝟏 I1=1/2 ∫1▒(2𝑥 − 2)/(𝑥^2 − 2𝑥 − 5) . 𝑑𝑥 Let 𝑥^2 − 2𝑥 − 5=𝑡 Diff both sides w.r.t.x 2𝑥−2−0=𝑑𝑡/𝑑𝑥 𝑑𝑥=𝑑𝑡/(2𝑥 − 2) Thus, our equation becomes ∴ I1=1/2 ∫1▒(2𝑥 − 2)/(𝑥^2 − 2𝑥 − 5) . 𝑑𝑥 Putting value of (𝑥^2−2𝑥−5)=𝑡 and 𝑑𝑥=𝑑𝑡/(2𝑥 − 2) I1=1/2 ∫1▒(2𝑥 − 2)/𝑡 . 𝑑𝑥 I1=1/2 ∫1▒(2𝑥 − 2)/𝑡 . 𝑑𝑡/(2𝑥 − 2) I1=1/2 ∫1▒1/𝑡 . 𝑑𝑡 I1=1/2 log|𝑡|+𝐶1 I1=1/2 log|𝑥^2−2𝑥−5|+𝐶1 Solving 𝑰𝟐 I2=4∫1▒1/(𝑥^2 − 2𝑥 − 5) . 𝑑𝑥 (Using 𝑡=𝑥^2−2𝑥−5) I2=4∫1▒1/(𝑥^2 − 2(𝑥)(1) − 5) . 𝑑𝑥 I2=4∫1▒1/(𝑥^2 − 2(𝑥)(1) + (1)^2 − (1)^2 − 5) . 𝑑𝑥 I2=4∫1▒1/((𝑥 − 1)^2 − (1)^2 − 5) . I2=4∫1▒1/((𝑥 − 1)^2 − 1 − 5) . 𝑑𝑥 I2=4∫1▒1/((𝑥 − 1)^2 − 6) . 𝑑𝑥 I2=4∫1▒1/((𝑥 − 1)^2 −(√6 )^2 ) . 𝑑𝑥 It is of form ∫1▒𝑑𝑥/(𝑥^2 − 𝑎^2 ) =1/2𝑎 log|(𝑥 − 𝑎)/(𝑥 + 𝑎)|+𝐶 ∴ Replacing 𝑥 by (𝑥−1) and a by √6 , we get I2=4/(2√6) log|(𝑥 − 1 − √6)/(𝑥 − 1 + √6)|+𝐶2 I2=2/√6 log|(𝑥 − 1 − √6)/(𝑥 − 1 + √6)|+𝐶2 Putting the values of I1 and I2 in (1) ∫1▒〖(𝑥 + 2)/√(𝑥^2 + 2𝑥 + 3).〗 . 𝑑𝑥 = 𝐼_1+𝐼_2 =1/2 log|𝑥^2−2𝑥−5|+𝐶1+2/√6 log|(𝑥 − 1 − √6)/(𝑥 − 1 + √6)|+𝐶"2 " =𝟏/𝟐 𝒍𝒐𝒈|𝒙^𝟐−𝟐𝒙−𝟓|+𝟐/√𝟔 𝒍𝒐𝒈|(𝒙 − 𝟏 − √𝟔)/(𝒙 − 𝟏 + √𝟔)|+𝑪