Ex 7.4, 18 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Integration by specific formulaes - Method 9
Integration by specific formulaes - Method 9
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.4, 18 5𝑥 − 21 + 2𝑥 + 3 𝑥2 5𝑥 − 21 + 2𝑥 + 3 𝑥2 𝑑𝑥 =5 𝑥 − 251 + 2𝑥 + 3 𝑥2 𝑑𝑥 = 56 6𝑥 − 1251 + 2𝑥 + 3 𝑥2 𝑑𝑥 = 56 6𝑥 + 2 − 125 − 21 + 2𝑥 + 3 𝑥2 𝑑𝑥 = 56 6𝑥 + 2 − 2251 + 2𝑥 + 3 𝑥2 𝑑𝑥 = 56 6𝑥 + 21 + 2𝑥 + 3 𝑥2 𝑑𝑥− 56× 225 𝑑𝑥1 + 2𝑥 + 3 𝑥2 = 56 6𝑥 + 21 + 2𝑥 + 3 𝑥2 𝑑𝑥− 113 𝑑𝑥1 + 2𝑥 + 3 𝑥2 Solving 𝑰𝟏 I1 = 56 2 + 6𝑥3 𝑥2+ 2𝑥 + 1 𝑑𝑥 Let 3 𝑥2+2𝑥+1=𝑡 Diff both sides w.r.t.x 6𝑥+2+0= 𝑑𝑡𝑑𝑥 𝑑𝑥= 𝑑𝑡6𝑥 + 2 Thus, our equation becomes I1= 56 2 + 6𝑥3 𝑥2+ 2𝑥 + 1 𝑑𝑥 Put the values of 3 𝑥2+2𝑥+1 and 𝑑𝑥, we get I1= 56 6𝑥 + 2𝑡 𝑑𝑥 I1= 56 6𝑥 + 2𝑡 × 𝑑𝑡6𝑥 + 2 I1= 56 1𝑡 . 𝑑𝑡 I1= 56 log 𝑡+𝐶1 I1= 56 log 3 𝑥2+2𝑥+1+𝐶1 Solving 𝑰𝟐 I2= 113 13 𝑥2+ 2𝑥 + 1 . 𝑑𝑥 = 113 13 𝑥2+ 2𝑥3 + 13 . 𝑑𝑥 = 113 . 3 1 𝑥2+ 2𝑥3 + 13 . 𝑑𝑥 = 119 1 𝑥2+ 2 𝑥 13 + 13 . 𝑑𝑥 = 119 1 𝑥2+ 2 𝑥 13 + 132− 132+ 13 . 𝑑𝑥 = 119 1 𝑥 + 132− 132+ 13 . 𝑑𝑥 = 119 1 𝑥 + 132− 19 + 13 . 𝑑𝑥 = 119 1 𝑥 + 132 + 29 . 𝑑𝑥 = 119 1 𝑥 + 132 + 23 2 . 𝑑𝑥 = 119 1 23 𝑡𝑎𝑛−1 𝑥 + 13 23+𝐶2 = 119 3 2 𝑡𝑎𝑛−1 3𝑥 +13 23+𝐶2 = 119 3 2 𝑡𝑎𝑛−1 3𝑥 + 1 2 = 119 . 3 2 𝑡𝑎𝑛−1 3𝑥 + 1 2 + 119 𝐶2 = 113 2 𝑡𝑎𝑛−1 3𝑥 + 1 2 + 𝐶3 Now, putting the values of I1 and I2 in (1) 5𝑥 − 21 + 2𝑥 + 3 𝑥2 . 𝑑𝑥 = 56 2 + 6𝑥1 + 2𝑥 + 3 𝑥2 . 𝑑𝑥− 113 11 + 2𝑥 + 3 𝑥2 . 𝑑𝑥 = 𝟓𝟔 𝒍𝒐𝒈 𝟑 𝒙𝟐+𝟐𝒙+𝟏− 𝟏𝟏𝟑 𝟐 𝒕𝒂𝒏−𝟏 𝟑𝒙 + 𝟏 𝟐 + 𝑪