Chapter 7 Class 12 Integrals
Concept wise

Ex 7.4, 17 - Integrate x + 2 / root x2 - 1 - Chapter 7 - Ex 7.4

Ex 7.4, 17 - Chapter 7 Class 12 Integrals - Part 2
Ex 7.4, 17 - Chapter 7 Class 12 Integrals - Part 3
Ex 7.4, 17 - Chapter 7 Class 12 Integrals - Part 4
Ex 7.4, 17 - Chapter 7 Class 12 Integrals - Part 5

Go Ad-free

Transcript

Ex 7.4, 17 Integrate the function (𝑥 + 2)/√(𝑥^2 − 1) ∫1▒(𝑥 + 2)/√(𝑥^2 − 1) . 𝑑𝑥=∫1▒(1/2 (2𝑥) + 2" " )/√(𝑥^2 − 1) . 𝑑𝑥 =∫1▒(1/2 (2𝑥))/√(𝑥^2 − 1) . 𝑑𝑥+∫1▒2/√(𝑥^2 − 1) . 𝑑𝑥 =1/2 ∫1▒( 2𝑥)/√(𝑥^2 − 1) . 𝑑𝑥+∫1▒2/√(𝑥^2 − 1) . 𝑑𝑥 Solving 𝑰𝟏 I1=1/2 ∫1▒( 2𝑥)/√(𝑥^2 − 1) 𝑑𝑥 …(1) Let 𝑥^2−1=𝑡 Differentiating w.r.t. x 2𝑥−0=𝑑𝑡/𝑑𝑥 𝑑𝑥=𝑑𝑡/2𝑥 Thus, our equation becomes I1=1/2 ∫1▒( 2𝑥)/√(𝑥^2 − 1) 𝑑𝑥 Put the values of (𝑥^2−1)=𝑡 and 𝑑𝑥, we get I1=1/2 ∫1▒( 2𝑥)/√𝑡 𝑑𝑥 I1=1/2 ∫1▒( 2𝑥)/√𝑡 × 𝑑𝑡/2𝑥 I1=1/2 ∫1▒( 1)/√𝑡 𝑑𝑡 I1=1/2 ∫1▒1/𝑡^(1/2) 𝑑𝑡 I1=1/2 ∫1▒𝑡^((−1)/2) 𝑑𝑡 I1=1/2 𝑡^((−1)/2 + 1)/((−1)/2 + 1) +𝐶1 I1=1/2 𝑡^(1/2)/(1/2) +𝐶1 I1=𝑡^(1/2)+𝐶1 I1=√𝑡+𝐶1 I1=√(𝑥^2 − 1) + 𝐶1 Solving 𝑰𝟐 I2=∫1▒2/√(𝑥^2 − 1) . 𝑑𝑥 I2=2∫1▒1/√(𝑥^2 − (1)^2 ) . 𝑑𝑥 I2=2 𝑙𝑜𝑔⁡|𝑥+√(𝑥^2 −1)|+𝐶2 It is of form ∫1▒𝑑𝑥/√(𝑥^2 − 𝑎^2 ) =𝑙𝑜𝑔⁡|𝑥+√(𝑥^2 − 𝑎^2 )|+𝐶 ∴ Replacing a by 1 , we get ("Using " 𝑡=𝑥^2−1) Now, Putting the values of I1 and I2 in (1) ∫1▒(𝑥 + 2)/√(𝑥^2 − 1) . 𝑑𝑥=1/2 ∫1▒( 2𝑥)/√(𝑥^2 − 1) . 𝑑𝑥+2∫1▒1/√(𝑥^2 − 1) . 𝑑𝑥 =√(𝑥^2 − 1) + 𝐶1+2 𝑙𝑜𝑔⁡|𝑥+√(𝑥^2 −1) |+𝐶2 =√(𝒙^𝟐 − 𝟏)+𝟐 𝒍𝒐𝒈⁡|𝒙+√(𝒙^𝟐 −𝟏)|+ 𝑪

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo